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Abstract  
 

The cellular cytoplasm is the environment in which all intracellular reactions take place. Its physical 

and chemical properties have a strong influence on a multitude of functions, such as signaling, transport, 

protein folding etc. Here, we aim to shed light on two different intracellular dynamic processes which 

have gained increased attention in recent years, owing to technological improvements in microscopy 

techniques: The formation of nuclear speckles, and the occurrence of anomalous diffusion.  

Nuclear speckles are membrane-less protein-rich bodies built around a long-non-coding RNA 

(lncRNA) scaffold. As a means of studying the dynamics of such a formation, we investigate the 

dynamics of synthetic speckles in bacteria by encoding two types of synthetic lncRNAs (slncRNA), 

which form the basis of the bacterial speckle. The slncRNAs incorporate RNA-binding phage-coat-

protein (RBP) binding sites downstream from a pT7 promoter. For both slncRNAs studied, fluorescent 

speckles containing dozens of RBP-bound slncRNA molecules form in cell poles. Fluorescence 

measurement over time reveals both positive and negative changes in intensity spaced by exponentially 

distributed periods of non-classified activity. We identify positive changes with transcriptional bursts, 

and term the negative, fluorescence degradation bursts. The data indicates that negative bursts 

correspond to shedding of multiple slncRNAs back to cytoplasm.  

Diffusion plays a critical role in many biological processes in the cell. Direct observation of molecular 

movement by single-particle-tracking experiments has contributed to a growing body of evidence that 

many cellular systems do not exhibit classical Brownian motion, but rather anomalous diffusion. 

Characterization of the physical process underlying anomalous diffusion remains a challenging problem 

due to the fact that commonly used tools for distinguishing between these processes are based on 

asymptotic behavior, which is experimentally inaccessible in most cases. Additionally, an accurate 

analysis of the diffusion model requires the calculation of many observables since different transport 

modes can result in the same diffusion power-law α, which is typically obtained from the mean squared 

displacements (MSD). We opted to use deep learning to infer the underlying process resulting in 

anomalous diffusion. We implemented a neural network to classify single-particle trajectories by 

diffusion type, separating between Brownian motion, fractional Brownian motion (FBM) and 

Continuous Time Random Walk (CTRW). We demonstrate the applicability of our network architecture 

for estimating the Hurst exponent for FBM and the diffusion coefficient for Brownian motion on both 

simulated and experimental data. We show these networks achieve better accuracy than time-averaged 

MSD analysis on simulated trajectories while requiring fewer time-steps. Furthermore, on experimental 

data, both network and ensemble MSD analysis converge to similar values, with the net requiring only 

half the number of trajectories required for ensemble MSD to achieve the same confidence interval.  
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Introduction 
 

The advent of advanced microscopy techniques has made it possible to explore cellular 

processes in greater spatial and temporal resolutions. This in turn, created a demand for better tools, 

both molecular and technical, that complement the new abilities. On the molecular side, constructs that 

allow for accurate labeling, novel fluorescent probes, and new model systems that enable the 

examination of general dynamics. On the technical side, data analysis tools that can handle the 

abundance of new data and interpret it correctly. Naturally, this technological advancement led to new 

discoveries about the dynamic nature of the cellular environment and its many components. 

This work is based on two separate research projects, each designed to aid in the understanding 

and analysis of different phenomena discovered due to improved localization and fluorescence 

microscopy methods.  

 

Section I 
In recent years, naturally occurring complexes of long-non-coding RNAs (lncRNAs) that are 

bound by various RNA binding proteins (RBPs) have been discovered in many Eukaryotic cell types. 

The most prominent examples being paraspeckles1–3 and nuclear-speckles4. These serve a purpose in 

the structure and organization of the nucleus as well as being involved in many biochemical reactions5,6. 

Synthetic systems with components of similar nature, namely lncRNAs bound by RBPs, have 

been in use for several decades as a means of labelling proteins of interest for tracking purposes7–9.  

These systems consist of a set of stem loops encoded either into the 5’ or 3’ end of the transcript of 

interest. The loops encode a binding site for the coat-protein of either MS2 or PP7 bacteriophages. In 

addition, the cells separately express a chimera of the particular coat-protein fused to a fluorescent 

protein. When co-expressed, the bound cassettes produce bright puncta or speckles which can be tracked 

in living cells. When viewed under a fluorescence microscope, these speckles show similar visual 

characteristics as other types of known nuclear bodies3. 

Motivated by this similarity we opted to study the synthetic system in bacteria as a model for 

the general dynamics of nuclear bodies. To this end, we tracked the expression of a pT7 promoter using 

two different slncRNAs as scaffold for our synthetic speckles, a cassette encoding for 24 binding sites 

for the PP7 bacteriophage coat protein (PP7-24x), considered as the standard in the field for labelling 

and tracking, as well as a new significantly shorter slncRNA encoding four PP7 and five Qβ phage-

coat-protein binding sites in interlaced fashion (Qβ-5x-PP7-4x). In the new slncRNA molecule, the 

respective coat proteins do not recognize the other binding site family10, and thus upon expression only 

half of the hairpins are bound, while the unbound half increases the stability of the entire structure. 

For both slncRNAs, we show that individual speckles within single cells can be observed and 

dynamically tracked. Upon analyzing the resulting intensity vs. time signals, we detected not only the 
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expected transcriptional bursts9,11, but also for the first time, bursts of signal degradation suggesting that 

speckles not only can accrue new slncRNAs upon transcription but also shed them in a burst-like 

fashion. Further analysis revealed important differences between the PP7-24x and the Qβ-5x-PP7-4x 

speckles, implying that macroscopic characteristics of these compartments are dependent on the RNA 

cassette design. Finally, we studied a three-state random telegraph kinetic model and show that it better 

describes the experimental data compared to the two-state model commonly used to describe 

transcription dynamics12. 

 

Section II 
Single-particle tracking (SPT) is widely used to investigate the biophysical properties of 

cellular membranes and other materials for extracting kinetics and other information on nanoscale 

processes. In recent years, rapid advances in labelling and detector sensitivity have widened the 

applicability for SPT to new biological systems with improved temporal and spatial resolution13–16. The 

key information gained from these obtained trajectories after analysis is a statistical model for the mode 

of motion and the parameters which shed light on the dominating elements of the environment 

governing motion13,17,18.  

 An important property of SPT methods is that the list of particle positions acquired during a 

measurement contains temporal information. This feature can be exploited to identify transient periods 

of statistically-similar motion within the same trajectory, including different diffusion states19–23, 

changes in diffusion type, e.g. distinguishing between Brownian, confined, and directed diffusion24–26 

and the associated kinetics of transitions and equilibrium probabilities. While identification of periods 

of diffusive processes gives some insight into an object behaviour, we would ideally identify a specific 

mathematical model that best describes the measured trajectory. The applicability of classical methods 

for accurately extracting the underlying parameters has been somewhat limited, thus necessitating a 

more reliable approach. 

Here, we develop a deep-learning-based framework for both the classification of diffusion processes in 

long trajectories, for which it exhibits higher precision over conventional analysis methods, as well as 

for short and noisy trajectories, including parameter estimation from an ensemble of very short 

trajectories (10 time-steps). Our approach is to use a set of convolutional neural networks (CNNs) for 

classifying either single trajectories or a set of short trajectories as one of three selected diffusion 

models: Brownian motion, FBM and CTRW, with simultaneous estimation of the relevant parameters 

by continuous regression. This method is simple to implement and outperforms conventional 

approaches in terms of parameter estimation precision, convergence rate and usability of short 

trajectories. 
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Abbreviations and Notations 
 

SM-FISH Single molecule fluorescent in-situ hybridization  

slncRNA Synthetic long noncoding RNA 

RBP RNA binding protein 

AU Arbitrary units 

FP Fluorescent protein 

RTN Random telegraph noise 

RNAP RNA polymerase  

PSD Power spectral density 
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Chapter 1: Background 
 

Transcription is a complex process that depends on successive stochastic interactions between 

many molecular species (transcription factors, promoters, polymerases, etc.). This randomness leads to 

variability in gene expression levels, even in a genetically identical population of cells27–29. In recent 

years, single molecule studies of transcription in different cell types (varying from bacteria to 

mammalian cells), have unexpectedly revealed dynamics characterized by bursts of transcriptional 

events that are separated by periods of quiescence in which transcription is barely observed9,30,31. These 

observations have been predominantly obtained using two methods offering single molecule resolution. 

The first is single-molecule fluorescent in-situ hybridization (SM-FISH), and the second, phage-coat-

protein labeling of cassettes containing multiple binding sites in living cells. SM-FISH facilitates 

quantitative analysis of the number of transcripts at a given time point in a population of single fixed 

cells by labeling mRNA molecules with fluorescently tagged DNA probes complementary to the 

transcript sequence. Although highly quantitative, this approach does not allow for the direct 

exploration of the temporal dynamics of transcription, and instead these are inferred from population 

statistics32,33.  

In order to directly study the dynamics of transcription, Singer and colleagues7 introduced a 

second method, whereby a set of stem loops is encoded either into the 5’ or 3’ end of a transcript. The 

loops encode a binding site for the coat-protein of either MS2 or PP7 bacteriophages. In addition, the 

cells separately express a chimera of the particular coat-protein fused to a fluorescent protein. When 

co-expressed, the coat-protein-bound cassettes yield bright puncta or speckles which can be tracked in 

living cells. Thus, in theory, evaluation of the spot intensity allows one to interrogate the dynamics of 

processes at the single-cell level7,31. Despite extensive efforts to optimize this technology yielding a 

commonly used cassette developed by Tutucci and Singer8 consisting of 12 or 24 binding sites, this 

approach has still not reached the single-molecule-in-single-cell threshold necessary for a direct 

evaluation of transcriptional dynamics. This is a result of several critical drawbacks. First, it is thought 

that the synthetic binding sites disrupt natural degradation, effectively artificially extending transcript 

lifetimes11. Second, sequences of multiple binding sites suffer from severe occupancy issues34, making 

it impossible to accurately correlate fluorescence to transcript number. Third, puncta are often 

composed of multiple RNA molecules, making it difficult to disentangle signals from single 

molecules34. Finally, due to the repeating binding sites, cassettes are prone both to mutation or general 

instability35. For example, in the context of bacteria, Golding et al9 engineered an MS2-coat protein 

binding site cassette containing 96 hairpin repeats. These were inserted downstream of the Plac/ara 

promoter, providing the first live evidence for transcriptional bursts in bacteria. However, individual 

transcriptional events were not resolved, and this relatively large cassette was not used in follow-up 

studies. Instead, later studies opted to use SM-FISH, RT-PCR, and RNA-seq to provide further proof 

for the pervasiveness of bursty transcription throughout the microbial genome36,37. 
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Naturally occurring puncta-like complexes of have been discovered in many Eukaryotic cell 

types. The most well-studied examples of these natural puncta-like complexes are paraspeckles1–3 and 

nuclear-speckles4 which are composed predominantly of long-non-coding RNAs (lncRNAs) and RNA 

binding proteins. These particles are an example of a wider phenomenon, which has received increased 

attention by the research community over the past decade, of liquid-liquid phase-separated micro- and 

nano-compartments within cells38. Given the similarity in optical microscopy observations between 

paraspeckles (for instance) and the RNA-phage coat protein puncta (Figure 1), it is possible to view the 

latter retrospectively as studies which showed that synthetic liquid-liquid phase-separated 

compartments (or speckles) can be formed in vivo (in any cell type) with phage coat proteins and 

synthetic lncRNA molecules that encode cassettes of their binding sites.  

 

Figure 1. Fluorescence imaging of paraspeckels and RNA binding sites cassettes. 

(a) A confocal image of a HeLa cell stained with an antibody to the paraspeckle protein; Fluorescent signal 

overlaid on a brightfield image of the cell. Taken from Fox et al.3 (b) S. cerevisiae cells expressing the MDN1 

mRNA tagged with 12 repeats of the MS2 binding sites (arrows mark single mRNAs). Taken from Tutucci et 

al.8 (c) Detection of mRNA tagged with 96 repeats of MS2 binding sites in live E. coli cells. Taken from 

Golding et al.9 

 

Chapter 2: Materials and Methods 

Bacterial strains and plasmids  

 

Strain Source Use Genotype 

TOP10 Prof. Amit lab General cloning and 
storage 

F- mcrA Δ(mrr-hsdRMS-
mcrBC) φ80lacZΔM15 
ΔlacX74 nupG recA1 
araD139 Δ(ara-leu)7697 
galE15 galK16 rpsL(StrR) 
endA1 λ- 

BL21-DE3 Prof. Amit lab T7 expression strain fhuA2 [lon] ompT gal (λ 
DE3) [dcm] ∆hsdS 
λ DE3 = λ sBamHIo ∆EcoRI-
B int::(lacI::PlacUV5::T7 
gene1) i21 ∆nin5 

Table 1. Bacterial strains 



8 
 

Plasmid Source Resistance Function 

pCR4-24XPP7SL Addgene # 31864 Ampicillin Expression of 24xPP7 
binding sites cassettes 

pBAC-lacZ Addgene # 13422 Chloramphenicol BAC plasmid (maintained as 
single copy) 

pSMART BAC Lucigen Chloramphenicol BAC plasmid (maintained as 
single copy) 

pUC57-T7-5Qβ-4PP7 GenScript Ampicillin Cloning of the 5Qβ-4PP7 
binding sites cassette  

A133-rhlr-PP7-
mCherry 

Prof. Amit lab Ampicillin Expression of PP7-mCherry 
fusion protein under an 
inducible rhlr promoter 

A133-rhlr-Qβ-mCherry Prof. Amit lab Ampicillin Expression of Qβ -mCherry 
fusion protein under an 
inducible rhlr promoter 

pBAC-5xQβ-4PP7-lacZ Prof. Amit lab Chloramphenicol Expression of the 5Qβ-4PP7 
binding sites cassette under 
a T7 promoter. 

Table 2. Plasmids 

Construction of the pBAC-Qβ-5x -PP7-4x binding sites array 
The T7 promoter followed by the binding sites sequence coding for 5Qβ-4PP7 binding sites: 

cctaggcgattatgacgttattctactttgattgtgatgcatgtctaagacagcatcgcctgctggtcgtgactaaggagtttatatggaaacccttacga

gacaatgctaccttaccggtcgggcccacttgtttttacccatgatgcatgtctaagacagcatcgcctgctggtcgtgactaaggagtttatatggaa

acccttagaaacagccgtcgccttgaagccgagaacaatgcatgtctaagacagcatatggattgcctgtctgttaaggagtttatatggaaaccctta

catcaggcttcgcagtatgcaacgcttgcgatgcatgtctaagacagcatttcaccgctttcctaagtaaggagtttatatggaaacccttagtactaac

tcgcagatgcatgtctaagacagcatcagaaacgtcacgtcctggc.   

(Qβ and PP7 binding sites marked in red and green respectively), was ordered from GenScript, Inc. 

(Piscataway, NJ), as part of a pUC57 plasmid, flanked by EcoRI and HindIII restriction sites. The 

sequence was extracted using the restriction enzymes and purified from gel. pBAC-LacZ backbone 

plasmid was obtained from Addgene (plasmid #13422). Both insert and vector were digested using the 

above restriction sites and ligated to form pBAC-Qβ-5x -PP7-4x-lacZ. 

 

Sample preparation 

BL21 cells expressing the BAC-Qβ-5x-PP7-4x and the Qβ-mCherry or PP7-mCherry 

expression plasmid were grown O/N in Luria Broth (LB), in 37⁰ with appropriate antibiotics (CM, 

AMP). O/N culture was diluted 1:100 into 3μl solution of BioAssay (BA)-LB (95%-5% v:v) with 

appropriate antibiotics, and induced with 1μl IPTG (final concentration 1mM) and 1.5μl N-butanoyl-l-

homoserine lactone (C4-HSL) (final concentration 60μM) to induce expression of T7 RNA polymerase 

and the RBP-FP respectively. Culture was shaken for 3 hours in 37⁰ before being applied to a gel slide 

(3μl Dulbecco's Phosphate-Buffered Saline (Biological Industries) x1, mixed with 0.045g SeaPlaque 

low melting Agarose (Lonza, Switzerland), heated for 20 seconds and allowed to cool for 30 minutes). 
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1.5 μl cell culture was deposited on a gel slide and allowed to settle for an additional 30 minutes before 

imaging. 

 

Image analysis 
 A single experiment was carried out by tracking a field of view for 60 minutes on Nikon Eclipse 

Ti-E epifluorescent microscope (Nikon, Japan) using the Andor iXon Ultra EMCCD camera at 6 

frames-per-minute with a 200 msec exposure time per frame to avoid photo-bleaching and sufficient 

recovery of fluorescence signal. Excitation was performed at 585 [nm] wavelength by a CooLED 

(Andover, UK) PE excitation system. Subsequently, the brightest spots (top 10%) in the field of view 

were tracked using the plugin developed by Sbalazarini and Koumoutsakos39 for imageJ40,41. A typical 

field of view usually contained dozens of cells, a portion of which were not fluorescent while others 

presented distinct bright speckles, localized at the cell poles as expected from literature42. 

The tracking data, (x,y,t coordinates of the bright spots centroids), together with the raw 

microscopy images were fed to a custom built Matlab (The Mathworks, Natick, MA) script designed to 

normalize the relevant spot data. Normalization was carried out as follows: for each bright spot, a 20-

pixel wide sub-frame was extracted from the field of view, with the spot at its center. Each pixel in the 

sub-frame was classified to one of three categories according to its intensity value. The brightest pixels 

were classified as ‘spot region’ and would usually appear in a cluster, corresponding to the spot itself. 

The dimmest pixels were classified as ‘dark background’, corresponding to an empty region in the field 

of view. Lastly, values in between were classified as ‘cell background’. Classification was done 

automatically using Otsu’s method43, (Figure 2). From each sub-frame, two values were extracted, the 

mean of the ‘spot region’ pixels and the mean of the ‘cell background’ pixels, corresponding to spot 

intensity value and cell intensity value. This was repeated for each spot from each frame in the data, 

resulting in sequences of intensity vs. time. Sequences were filtered for high frequency noise by a 

moving average filter with a window of 10 time points. Normalization was done by subtracting the cell 

intensity values from the spot intensity values. 
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Figure 2. Image analysis and signal acquisition. 

(a) Leftmost image – Typical field of view showing bright fluorescent spots, along with bright cells. Dim red 

background is cells which are not fluorescing. Middle image – Capturing top 10% of bright spots (marked in 

red circles). Presented are three example sub-frames, each showing a spot and its immediate surroundings. For 

each sub-frame, each pixel is classified to one of three intensity levels – bright spot, cell background and dark 

background corresponding to white, grey and black colors in the segmented images. (b) Sample spot signal 

(top), and its corresponding cell background signal. Blue line is raw data, orange line is smoothed data after a 

10-point moving average. (c) Output signal resulting from the subtraction of the background signal from the 

spot signal.  

 

Identifying burst events 
We define a burst as a sudden change or shift in the level of the speckle’s fluorescence intensity 

leading to either a sustainable higher or lower new signal level (Figure 3a- top). To identify such shifts 

in the base-line fluorescence intensity, we use a moving-average window of ten points to smooth the 

data. The effect of such an operation is to bias the fluctuations of the smoothed noisy signal in the 

immediate vicinity of the bursts towards either a gradual increase or decrease in the signal (Figure 3 a-

bottom). Random fluctuations, which do not settle on a new baseline level are not expected to generate 

a gradual and continuous increase over multiple time-points in a smoothed signal. As a result, we search 

for contiguous segments of gradual increase or decrease and record only those whose probability for 

occurrence are 1 in 1000 or less given a Null hypothesis of randomly fluctuating noise. As an example, 

we consider a constant base-line intensity amplitude with white Gaussian noise. For any particular time-

point the probability that the next point will exhibit either a stronger or weaker signal is 50% 

respectively. Since the noise is independent and identically distributed (IID), the probability for an 
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increase in the signal lasting 10 consecutive time points is 
1

210
=

1

1024
 . Given that our traces typically 

take place over ~60 minutes and include 360 frames in total, we expect <1 such random 1 in 1000 events 

per trace. This probability remains roughly the same even after the moving average smoothing. 

 For the general case, the underlying empirical signal is not constant, and may either be trending 

up or down. Therefore, it is necessary to normalize the probability per signal and determine a threshold 

– m, such that the probability for a consecutive increase of m time points is 
1

1024
 given the underlying 

signal trend. For every trace, we first compute the intensity difference distribution (Figure 3 b). The 

probability that the signal increases at a random time point is calculated by summing the number of 

points in which the signal derivative is positive and dividing by the total length of the signal. 

𝑝 =
𝑙𝑒𝑛𝑔𝑡ℎ (

𝑑𝑆
𝑑𝑡
> 0)

𝑙𝑒𝑛𝑔𝑡ℎ(𝑆)
 (1) 

This in turn allows us to compute m as follows: 

𝑝𝑚 =
1

210
⇒ 𝑚𝑙𝑜𝑔2(𝑝) = −10 ⇒ 𝑚 = −

10

log2(𝑝)
 (2) 

The threshold is calculated for each signal separately and is usually in the range of 7-13 time 

points. An analogous threshold is calculated for decrements in the signal and is usually in the range 

[𝑚 − 1,𝑚 + 1]. We mark each trace with the number of events that exceed this threshold and define 

those as bursts.  

While the choice of smoothing window is somewhat arbitrary, it was chosen to be sufficiently 

large to allow for both an identification of a gradual increase or decrease due to the burst and a stable 

base-line shift, without compromising our ability to properly characterize the signal on a longer time-

scale.  To check that our choice of smoothing parameter does not affect the interpretation of the data, 

we applied both shorter and longer moving-average windows showing that the over-all nature of the 

results remains unchanged (Figure 3 c-d). The main difference between the averaging windows lies in 

the number of significant events identified. The 5-point window results in a total of 91 positive, and 86 

negative events found, while the 15-point window results in 577 positive and 424 negative events. 
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Figure 3. Identification of burst events. 

(a) Effects of noise, and noise-filtering, on a bursty signal. Underlying simulated signal is comprised of 

instantaneous increases in intensity (top plot – blue line), however, this feature disappears with the addition 

of Gaussian noise with a standard deviation of 30 [A.U] (top plot - orange line). The noisy signal was filtered 

with a 10-point moving average filter and appears continuous (bottom plot). (b) Distribution of intensity 

difference between successive time points of the simulated signal appearing in (a), showing a slight bias 

towards the positive side (54% of the derivative is positive). This distribution is used to calculate the 

threshold for a significant event. (c-d) Amplitude distribution of the Qβ-5x experimental data analyzed with 

different moving average windows. (c) 5 time-points moving average (npos=605, nneg=446, nnon-classified=573). 

(d) 15 time-points moving average (npos=91, nneg=86, nnon-classified=36). 

 

Chapter 3: Results 
 

Qβ-5x-PP7-4x RBP cassette displays positive and negative intensity bursts 
In order to study synthetic speckle formation with slncRNA-RBP complexes, we designed a 

short mRNA binding-site cassette, consisting of four native PP7, and five native Qβ binding sites in an 

interlaced manner (Figure 4 a). The cassette was cloned downstream to a pT7 promoter on a BAC 

(Addgene plasmid # 13422), and transformed, together with a plasmid encoding for Qβ-mCherry from 

a pRhlR inducible promoter, to BL21 E. coli cells. Single cells expressing the Qβ-5x-PP7-4x together 

with Qβ-mCherry (data gathered from these cells is denoted as Qβ-5x data) were imaged every 10 

seconds for 60 minutes under constant conditions (200 msec integration time, 37⁰ c), and subsequently 

the intensity of bright speckles (Figure 4 b) resulting from the bound cassette in each cell were analyzed 

for every timepoint resulting in a trace of intensity vs. time. During processing each trace was smoothed 
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by a 10-point moving average and subsequentially normalized by subtracting the background of the 

cellular environment surrounding the speckle (which was smoothed in similar manner). The resulting 

signals are either decreasing or increasing in overall intensity, and occasionally signals that initially 

show an increase and subsequent decrease are observed (Figure 4 c) 

To determine whether the “sharp” increases or decreases in intensity correspond to a distinct 

signal, and are not part of the underlying noise, we employed a scheme, whereby statistically significant 

changes in intensity are identified as burst events. In brief, we assume the total fluorescence is 

comprised of three distinct signal processes: total transcript fluorescence, background fluorescence and 

noise. We further assume that background fluorescence is slowly changing, as compared with total 

transcript fluorescence which depends on the dynamic and frequent processes of transcription and 

degradation. Finally, we consider noise to be a symmetric, memory-less process. We define a “burst” 

as a change or shift in the level of signal intensity leading to either a higher or lower new sustainable 

signal intensity level. To identify such shifts in the baseline intensity we search for continuous segments 

of gradual increase or decrease whose probability of occurrence, under our assumption of random 

symmetric noise, is 1 in 1000. From this probability we set a threshold for the minimum length of a 

gradual shift, where events lasting longer than this threshold are classified as burst events. Segments 

within the signal that are not classified as either a negative or positive burst event are considered 

unclassified. Unclassified segments are typically signal elements whose noise profile does not allow us 

to make a classification into one or the other event-type. Such segments can consist of multiple event 

types, for example: bursts that do not pass the false positive threshold that we set, or events where no 

transcriptional or degradation processes are recorded. We mark the classifications with positive “burst”, 

negative “burst”, and non-classified events in green, red, and blue respectively (Figure 4 c-right). We 

confine our segment analysis between the first and last significant segments identified in a given signal, 

since we cannot correctly classify signal sections that extend beyond the observed trace. These 

unprocessed segments (before the first significant event, and after the last) are marked in a dashed black 

line.     

 Next, using this classification criteria for bursts, we annotated the three features of our signal 

(increasing bursts, decreasing bursts, and non-classified events) for ~1000 speckle traces. From this 

data we aggregated the amplitude (ΔI) distribution and rate of intensity change (ΔI/ Δt) for all three 

event types (Figure 4 d-e). The plots show distributions with three separated populations of non-

classified, increasing, and decreasing bursts, with the number of positive and negative burst events 

being approximately equal (<15% difference regardless of moving average window and the statistical 

threshold set for identification).  
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Figure 4. Biological setup, sample signals and amplitude distributions. 

(a) Biological scheme of the experimental system comprised of the slncRNA with binding site configuration 

Qβ-5x-PP7-4x and the RBP-FP fusion protein Qβ-mCherry. (b) A region of interest (ROI) from a field of view 

of an experiment showing dark background, cells (dim red) and bright speckles (bright red), resulting in a high 

dynamic range as shown by the color bar presenting intensity values in A.U. (c) Sample intensity signals taken 

from different speckles from different experiments on separate days showing a range of behaviors. Zoom-in 

shows the three lower signals with overlaid segments presenting three signal states: strong increase (green), 

strong decrease (red), non-classified (blue). The black dashed lines mark data that was not analyzed (segments 

extend beyond signal range). (d) Empirical amplitude distributions gathered from 1200 signals. Green, blue 

and red correspond to increasing, decreasing and non-classified signal segments. (e) Rate distributions gathered 

from 1200 signals. 
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Negative and positive burst distributions indicate 1-3 molecules per burst 
To further explore the burst distributions, we first take into consideration the assumed nature 

of burst events. To a first approximation, molecular bursting events are thought to vary over a small 

range of integer values (e.g. 1-10 as for transcriptional bursting9), and should thus exhibit a Poisson-

like distribution. Consequently, the accumulation of the fluorescent amplitudes of a large number of 

burst events should behave according to a Poisson distribution as well. Since each burst amplitude 

should be directly proportional to the number of events which comprise it, the mean number of burst 

events and fluorescence signature per molecule can then be extracted from such distributions.  

We plot separately the distributions for the positive and negative burst amplitudes as blue dots 

(Figure 5 a-b).  Each plot is overlaid with three Poisson distribution fits with parameter λ = 1 (red), 2 

(green), and 3 (black) respectively, corresponding to a mean of 1-3 transcripts per burst. Given the fact 

that we cannot directly infer the fluorescence intensity associated with a single RNA cassette, we fitted 

the distributions with a modified Poisson function of the form: 

𝑝(𝐼) =  
𝜆
𝐼
𝑘0𝑒−𝜆

(
𝐼
𝑘0
) !

 (3) 

 

where I is the experimental fluorescence amplitude, λ is the Poisson parameter (rate), and K0 is a fitting 

parameter whose value corresponds to the amplitude associated with a single RBP-bound slncRNA 

molecule within the burst. For each rate we chose the fit to K0 that minimizes the deviation from the 

experimental data. The fits show that while the λ=3 distribution provides the best fit to the data 

(corresponding to a mean of three transcriptional slncRNA’s per burst), the λ=1 distribution provides 

the best fit to the tail of the distribution, but fails at lower amplitude values which may be due to our 

analysis threshold that treats many of these small amplitude events as unclassified. Since higher rate 

distributions provide a progressively worse fit (as Poisson distribution resembles a Gaussian curve in 

higher rates), we conclude that both the transcriptional and degradation distributions provide a 

reasonable match to Poisson distributions with λ=1 to 3. This match suggests that the range of 

fluorescence amplitude spanning ~40-95 (A.U) most likely corresponds to the amplitude generated by 

the addition or subtraction of a single Qβ-5x-PP7-4x slncRNA into the speckle under our experimental 

conditions. Finally, given the match with the lower rate Poisson distributions, it seems likely that the 

number of cassettes involved in both the positive and negative bursts varies between 1 and 3 molecules 

per burst.  

 To provide additional confirmation that we are able to detect a signal from a single slncRNA 

molecule, we repeated the experiment with a strain expressing PP7-mCherry with a 24x PP7 binding 

site-cassette (sequence obtained from Addgene plasmid #31864 44). For this cassette, denoted as PP7-

24x, the plots show similar distributions as to the one observed for Qβ-5x (Figure 5 c-d). The 

distributions appear to be well described by Poisson distributions with λ=1-3 as well, but with an 
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increase of 62-64% in the fitted K0 per λ. This result is consistent with past observations, which have 

shown that these cassettes are only occupied by 8-14 proteins, resulting in a reduced intensity relative 

to the intensity expected from the number of designed binding sites34. The consistency of the Poisson 

fit results for both cassettes indicate that in the PP7-24x case, we are also observing 1-3 mRNAs per 

burst, and that the nature of the reporting cassette does not have a large effect on the outcome of the 

experiment.  

 Given the values extracted for the fluorescence intensity that is associated with a single reporter 

cassette, we computed a lower estimate for the average number of RBP-bound slncRNAs that make-up 

a single speckle. To do so we took the average value of the Poisson 1- K0 value (93 and 151 A.U. for 

the Qβ-5x and PP7-24x respectively) and computed the average number of cassettes per trace by 

dividing the average trace intensity with the appropriate K0. The results (Figure 5 e-f) show that a single 

speckle can be estimated to be made up of at least 10-30 slncRNA molecules on average. 

 

Figure 5. Poisson distribution fitting of empirical amplitude data. 

(a-d) Experimental data presented by a scatter plot, overlaid by theoretical Poisson probability distribution 

functions (PDFs) with parameter values 1-3, presented in red, green, and black lines, respectively. Theoretical 
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fits normalized to correct x-axis by the factor K0 (a) Qβ-5x positive amplitudes (n = 333). (b) Qβ-5x negative 

amplitudes (n = 298). (c) PP7-24x positive amplitudes (n = 549). (d) PP7-24x negative amplitudes (n = 533). 

(e-f) Average number of binding sites cassettes per signal, evaluated by dividing the average signal intensity 

by the value of K0 calculated from the Poisson PDF with λ=1 fit. (e) Qβ-5x data. (f) PP7-24x data. 

 

Measuring the effect of background choice on observed signal 
To check that our analysis is independent of our choice of image background and segmentation 

results, we repeated the analysis on all experimental traces using the same definition for a “burst”, but 

with an alternative selection of the sub-frame size used to calculate the background intensity for 

normalization. A large sub-frame would undoubtedly include other cells, with possibly different spots 

of themselves, inserting a bias to the background intensity signal. On the other hand, a small sub-frame 

might not have a sufficient spot-to-background area ratio, resulting in an underestimated background 

signal. 

 To test whether this has a meaningful effect on the data, we repeated the entire data analysis 

process with a sub-frame length of 10 pixels (Figure 6), i.e. a 10-pixel-wide sub frame was extracted 

from the FOV, with the spot at its center, in contrast to the 20-pixel wide used for analysis. Smaller 

lengths would cause a loss of spot intensity data and larger lengths would bring about biases originating 

from other cells and therefore were not considered. 

Overall, this control comes to show that the statistical results presented in the text, and the 

conclusions drawn from them do not suffer any change upon altering this step in the data processing. 

That being said, this control does show that absolute quantitative results, i.e. intensity value per binding 

site, will be difficult to correctly calculate without further work and calibrations. 
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Figure 6. Background selection controls. 

(a) Sample comparison between two sub-frames with 20-pixel width (top) and 10-pixel width (bottom) (b) 

sample intensity signal (after moving average and background normalization), demonstrating the effects of a 

small sub-pixel, resulting from the number of pixels being classified as ‘spot’ being smaller in the 10-pixel 

wide sub-frame. Despite this difference, both signals show similar behavior (i.e. similar ‘hills’ and ‘valleys’). 

(c) Comparison between positive amplitude statistics for the PP7-24x experiments calculated with the two sub-

frame sizes.  (d) Quiescent segments durations of the PP7-24x showing no discernible difference in the 

durations of quiescent periods between the two variations. (e-f) fittings of the amplitude data gathered using 

10-pixel wide sub-frames, to theoretical Poisson probability density functions with rates 1,2,3, similarly to the 

process described in eq. 3. The optimal K0 values in this case differ by no more than 10% in all cases, compared 

to their 20-pixel-wide counterparts presented in Figure 4. 

 (e), and negative amplitudes (f) 

 

Signal simulations support a multi-amplitude bursty model 
To check that our analysis is consistent with an underlying random burst signal, we simulated 

three types of base signals with an added white Gaussian noise of magnitude 30 [A.U] peak-to-peak 

amplitude, matching the value calculated from the experimental traces. For each simulation type, 1000 
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signals of 360 time-points were simulated and analyzed using the same data analysis process used for 

the experimental signals. 

 We simulated a flat, constant signal with noise (Figure 7 a - top), a gradually ascending signal 

with noise (Figure 7 b - top), and a three-state random telegraph signal with noise (Figure 7 c - top). 

We then applied our burst-detection algorithm described above and found that for the flat signal (Figure 

7 d) positive and negative bursts (green and red respectively) and non-classified events are detected. 

However, a closer examination of the results reveals that the burst amplitude width is smaller by a factor 

of ~3 as compared with the experimental data bursts, and the total number of events observed is 

significantly smaller than the experimental data (i.e. 371 positive, 439 negative, and 274 non-classified 

segments found), indicating less than one event per signal, as expected from our base assumption that 

a rare noise event occurs once in a thousand time points. For the gradually increasing signal with 

additional noise, (Figure 7 e) a negligible number of burst-like events was detected by our algorithm, 

with a pronounced bias towards positive events. The scarcity of events can be explained by the positive 

bias in the signal which results in a steep increase in the statistical threshold for event identification. 

Finally, a signal designed to mimic our interpretation of the experimental data containing 

randomly distributed instantaneous bursts, both increasing and decreasing with multiple possible 

amplitudes was analyzed (Figure 7 f). Our simulated signals resulted in a symmetric amplitude 

distribution, comprising of non-Gaussian or skewed amplitude distributions. Additionally, the range of 

amplitudes observed is 2x larger as compared with the case for the constant signal, with the non-

classified amplitudes presenting a wider distribution. A total of 2297 positive, 2221 negative and 2981 

non-classified segments were found, which is approximately an order of magnitude larger than the 

number of events observed for the constant signal, and similarly to the density of events observed 

experimentally, is larger than 1 event per 1000 time-points (2.4 and 6.2 events per 1000 time-steps for 

the experimental Qβ-5x-PP7-4x and bursty simulated signal respectively). 
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Figure 7. Numerical simulations of potential signals. 

(a-c) Simulated signal without noise (top) and with Gaussian noise (bottom) for a constant (a), gradually 

increasing (b), and intermittent/bursty (c) signals. (d-f) Amplitude distributions computed with our signal 

analysis algorithm for the constant (npos=371, nneg=439, nnon-classified=274) (d), gradually increasing (npos=76, 

nneg=9, nnon-classified=9) (e), and intermittent/bursty (npos=2297, nneg=2221, nnon-classified=2981) (f) signal 

simulations. In all three panels red, blue, and green bars correspond to strongly decreasing, non-classified, and 

strongly increasing events, respectively. Given the close match of the intermittent signal simulation to the 

experimental data, this result indicates that in our experimental data, no more than ~10% of the called “events” 

are false positives.   

 

Duration of events further supports the three-state random telegraph model 
We next compared frequency and duration of burst and non-classified states (Figure 8). Burst 

states (Figure 8 a-b) for both the Qβ-5x-PP7-4x and PP7-24x cassettes appear to last approximately 2.5 

minutes, irrespective of cassette size or burst-type, indicating a possible temporal resolution issue 

arising from the statistical analysis process wherein any event shorter than the temporal threshold will 

be missed. In contrast to these narrow duration distributions, non-classified state durations (Figure 8c) 

are exponentially distributed, with an average decay rate of about 10 minutes for both Qβ-5x-PP7-4x 

and PP7-24x. The non-classified amplitude distribution (Figure 8 d) for the PP7-24x cassette shows a 

slight preference for slow signal degradation trends (sample skewness of -0.55), that may be consistent 

with increased mRNA stability that has been previously attributed to these cassettes34 or to the 

underlying structural characteristic of the speckle which differ from the Qβ-5x-PP7-4x example. 

Specifically, the binding sites cassette either slows down, or entirely halts the signal degradation 

process, resulting in negative amplitudes that do not meet our statistical criteria, but instead appears in 

the non-classified distribution.  

In order to provide context to the information generated by the duration data, we studied the 

duration of events in our simulated signals. Interestingly, both positive and negative durations for the 
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burst events in each signal bear a striking resemblance to the experimental data (Figure 8 g - top). This 

result is consistent with an interpretation that burst duration measurements are limited by the resolution 

of the experiment (1 frame every 10 seconds) and choice of smoothing algorithm (ten experimental 

frames or simulated time points).  Together, these constraints result in a lower bound of 150 seconds, 

or 15 frames on the temporal resolution, in which a burst can be detected. Any process occurring faster 

would be obscured by the smoothing algorithm and missed. By contrast, important information can be 

deduced from the simulated duration of the non-classified events (Figure 8 e-g – bottom). Here, the 

three different signals generate visually distinguishable duration signals, which correspond to a distinct 

fingerprint for each signal type in this case. While both the increasing and constant signal generate a 

gradually declining and spread-out non-classified duration distributions, the random telegraph signal 

generated an exponentially distributed duration distribution. This is consistent with the experimental 

observations and provides further evidence that the underlying signal in our experimental data is a multi-

state random telegraph noise.  
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Figure 8. Temporal statistics and non-classified amplitudes for experimental and simulated signals. 

(a) Duration of positive segments (transcription bursts) showing a Poisson-like distribution shifted by 1 

minutes, in both cases. (b) Duration of negative segments (degradation bursts), showing an exponential-like 

distribution shifted by ~2 minutes for both cases. (c) Duration of non-classified segments, showing an 

exponential distribution decay time τ≈10 (min) for both cases.  (d) Amplitude distribution of non-classified 

segments. The PP7-24x data is skewed toward negative values (sample skewness of -0.55 for PP7-24x, and 

0.83 for Qβ-5x data). For all cases, Qβ-5x-PP7-4x, and PP7-24x cassettes are presented in cyan and magenta, 

respectively. (e-g) Temporal statistics for the simulated signals for the (e) constant, (f) gradually increasing, (g) 

and bursty signals respectively.   

 

Finally, we checked if the bursts occurred at random or whether there was some bias in the 

order of the bursts. To do so we examined whether after a non-classified period that lasted more than 

2.5 minutes there was a bias for one type of burst or the other. The data shows that no such bias seems 

to exist, i.e. either a positive or negative burst seems to occur after non-classified events with equal 

probability (Figure 9). This observation is consistent with the fact that we measured fluorescence from 

bright speckles, which appear after accumulation of multiple binding-sites cassettes, meaning the 

transcript levels in the cell are at a steady state. 

 

 

Figure 9. Distribution of burst sequence. 

(a-c) Distribution of successive bursts according to current burst type. (a) negative, (b) quiescent, (c) positive. 

(d) Schematic of the data presented in (e,f). Distribution of bursts following a quiescent event longer than 2.5 

minutes, which follows a burst-type. (e) Following a negative segment. (f) Following a positive segment. 
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A double random telegraph noise model describes steady state speckle intensity 
The existence of negative bursts that appear to be independent of labelling cassette implies that 

the well-studied two-state model for transcription dynamics11,12,45, which incorporates one state with a 

strong transcriptional rate and another state with a weak rate, must be modified, since the kinetics of 

this model cannot generate two isolated sets of bursts. We therefore add another degradation rate, 

extending the two-state to a four state-model. 

The mathematical derivations presented here are based on the work done by Sanchez et al45. 

The general form of the model contains two stochastic variables: the number of mRNA molecules n, 

and the state of the system S, with the system being the two major processes controlling speckle 

fluorescence, transcription and degradation of molecules. The general model (Figure 10), is comprised 

of four possible states for the system, strong transcription and strong degradation; strong transcription 

and weak degradation; weak transcription and strong degradation; weak transcription and weak 

degradation. The rate of transcription is determined by the state of the promoter (open/closed), and the 

rate of degradation is similarly determined by the  accessibility of mRNA molecules to RNase binding 

or the availability of the degradation enzymes. 

 

Figure 10. Scheme of the general four-state model. 

Black circles represent the possible states of the system for any n>1 number of RNA molecules. Red and green 

arrows indicate degradation and transcription processes, respectively, governing the number of molecules. 

Dashed arrows stand for transitions between system states. 
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The temporal dynamics of this stochastic system are given by the master equation, which can 

be derived by listing all possible reactions leading to a change in S or in n. 

𝑑

𝑑𝑡
𝑃1,𝑛 = 𝑟𝑆𝑃1,𝑛−1 + 𝛾𝑆(𝑛 + 1)𝑃1,𝑛+1 + 𝑘21𝑃2,𝑛 + 𝑘31𝑃3,𝑛 + 𝑘41𝑃4,𝑛 − 𝑃1,𝑛[𝛾𝑆𝑛 + 𝑟𝑆 + 𝑘12 + 𝑘13 + 𝑘14] 

𝑑

𝑑𝑡
𝑃2,𝑛 = 𝑟𝑆𝑃2,𝑛−1 + 𝛾𝑊(𝑛 + 1)𝑃2,𝑛+1 + 𝑘12𝑃1,𝑛 + 𝑘32𝑃3,𝑛 + 𝑘42𝑃4,𝑛 − 𝑃2,𝑛[𝛾𝑊𝑛 + 𝑟𝑆 + 𝑘21 + 𝑘23 + 𝑘24] 

𝑑

𝑑𝑡
𝑃3,𝑛 = 𝑟𝑊𝑃3,𝑛−1 + 𝛾𝑆(𝑛 + 1)𝑃3,𝑛+1 + 𝑘13𝑃1,𝑛 + 𝑘23𝑃2,𝑛 + 𝑘43𝑃4,𝑛 − 𝑃3,𝑛[𝛾𝑆𝑛 + 𝑟𝑊 + 𝑘31 + 𝑘32 + 𝑘34] 

𝑑

𝑑𝑡
𝑃4,𝑛 = 𝑟𝑊𝑃4,𝑛−1 + 𝛾𝑊(𝑛 + 1)𝑃4,𝑛+1 + 𝑘14𝑃1,𝑛 + 𝑘24𝑃2,𝑛 + 𝑘34𝑃3,𝑛 − 𝑃4,𝑛[𝛾𝑊𝑛 + 𝑟𝑊 + 𝑘41 + 𝑘42 + 𝑘43] 

 (4)         

 

Here the subscripts ‘S’ and ‘W’, stand for strong and weak respectively, indicating the strength of the 

biochemical process. 

Using the following definitions: 

𝑃⃗ (𝑛) = (

𝑃1,𝑛
𝑃2,𝑛
𝑃3,𝑛
𝑃4,𝑛

) 

𝐾̂ =

(

 

−[𝑘12 + 𝑘13 + 𝑘14] 𝑘21 𝑘31 𝑘41
𝑘12 −[𝑘21 + 𝑘23 + 𝑘24] 𝑘32 𝑘42
𝑘13 𝑘23 −[𝑘31 + 𝑘32 + 𝑘34] 𝑘43
𝑘14 𝑘24 𝑘34 −[𝑘41 + 𝑘42 + 𝑘43])

  

𝑅̂ = (

𝑟𝑆 0 0 0

0 𝑟𝑆 0 0

0 0 𝑟𝑊 0

0 0 0 𝑟𝑊

)  ;  Γ̂ =

(

 

𝛾
𝑆

0 0 0

0 𝛾
𝑊

0 0

0 0 𝛾
𝑆

0

0 0 0 𝛾
𝑊)

  

 

(5) 

We can write the above equations in matrix form. 

𝑑

𝑑𝑡
𝑃⃗ (𝑛) = [𝐾̂ − 𝑅̂ − 𝑛Γ̂]𝑃⃗ (𝑛) + 𝑅̂𝑃⃗ (𝑛 − 1) + (𝑛 + 1)Γ̂𝑃⃗ (𝑛 + 1) (6) 

 

The matrix 𝐾̂ describes the transition rates between system states, the matrices 𝑅̂ and Γ̂ describe the 

rates of transcription initiation rates, and degradation rates, respectively.  

At this point, we can derive equations from which the first and second moments of the mRNA 

distribution in steady state can be computed. The derivation is similar to the one presented by Sanchez 

et al45 and therefore will not be repeated here. Since it is convenient to write the resulting equations in 

terms of partial moments of the mRNA distribution, they will be defined here as: 
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𝑛⃗ 0 = ∑ 𝑛0∞
𝑛=0 𝑃⃗ (𝑛) =

(

 
 

∑ 𝑛0𝑃1,𝑛
∞
𝑛=0

∑ 𝑛0𝑃2,𝑛
∞
𝑛=0

∑ 𝑛0𝑃3,𝑛
∞
𝑛=0

∑ 𝑛0𝑃4,𝑛
∞
𝑛=0 )

 
 
= (

𝑃1
𝑃2
𝑃3
𝑃4

)   ;   𝑛⃗ 1 = ∑ 𝑛∞
𝑛=0 𝑃⃗ (𝑛) =

(

 
 

∑ 𝑛𝑃1,𝑛
∞
𝑛=0

∑ 𝑛𝑃2,𝑛
∞
𝑛=0

∑ 𝑛𝑃3,𝑛
∞
𝑛=0

∑ 𝑛𝑃4,𝑛
∞
𝑛=0 )

 
 

; 

𝑛⃗ 2 = ∑ 𝑛2∞
𝑛=0 𝑃⃗ (𝑛) =

(

 
 

∑ 𝑛2𝑃1,𝑛
∞
𝑛=0

∑ 𝑛2𝑃2,𝑛
∞
𝑛=0

∑ 𝑛2𝑃3,𝑛
∞
𝑛=0

∑ 𝑛2𝑃4,𝑛
∞
𝑛=0 )

 
 

  

 

(7) 

 

𝑛⃗ 0 can be found from the equation:  

𝐾̂𝑛⃗ 0 = 0  (8) 

Together with the normalization condition: 

𝑃1 + 𝑃2 + 𝑃3 + 𝑃4 = 1  (9) 

 

𝑛⃗ 1 from the equation: 

(𝐾̂ − Γ̂)𝑛⃗ 1 + 𝑅̂𝑛⃗ 0 = 0 (10) 

 

𝑛⃗ 2 from the equation: 

𝐾̂𝑛⃗ 2 + 𝑅̂(2𝑛⃗ 1 + 𝑛⃗ 0) + Γ̂(𝑛⃗ 1 − 2𝑛⃗ 2) = 0 (11) 

 

Using these equations, the Fano factor can be extracted and computed numerically.  

Biological assumptions can be made to simplify the model in order to simulate it using Monte 

Carlo methods. To this end, we give the different states biological meaning. 

Model State Biological state 

1 Strong transcription; strong degradation 

2 Strong transcription; weak degradation 

3 Weak transcription; strong degradation 

4 Weak transcription; weak degradation 

Table 3. Biological meaning of model states 

First, we assume that a simultaneous transition of both transcription and degradation is unlikely, i.e. 

𝑘14, 𝑘41, 𝑘23, 𝑘32 = 0. Second, transition rates in a specific system do not change between the different 
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states, meaning that, switching of a promoter from ‘open’ to ‘closed’ will have the same rate regardless 

of degradation and vice versa. In mathematical terms: 

𝑘12 = 𝑘34 = 𝑘𝑜𝑓𝑓
𝑑  Strong degradation → Weak degradation 

𝑘21 = 𝑘43 = 𝑘𝑜𝑛
𝑑  Weak degradation → Strong degradation 

𝑘13 = 𝑘24 = 𝑘𝑜𝑓𝑓
𝑡  Strong transcription → Weak transcription 

𝑘31 = 𝑘42 = 𝑘𝑜𝑛
𝑡  Weak transcription → Strong transcription  

Table 4. Parameter designations for biological model 

Finally, for simplicity we set 𝛾𝑊 = 0, as we believe this value to be insignificant compared to 𝛾𝐿 

The matrices then take the following form: 

𝐾̂ =

(

 
 

−[𝑘𝑜𝑓𝑓
𝑑 + 𝑘𝑜𝑓𝑓

𝑡 ] 𝑘𝑜𝑛
𝑑 𝑘𝑜𝑛

𝑡 0

𝑘𝑜𝑓𝑓
𝑑 −[𝑘𝑜𝑛

𝑑 + 𝑘𝑜𝑓𝑓
𝑡 ] 0 𝑘𝑜𝑛

𝑡

𝑘𝑜𝑓𝑓
𝑡 0 −[𝑘𝑜𝑛

𝑡 + 𝑘𝑜𝑓𝑓
𝑑 ] 𝑘𝑜𝑛

𝑑

0 𝑘𝑜𝑓𝑓
𝑡 𝑘𝑜𝑓𝑓

𝑑 −[𝑘𝑜𝑛
𝑡 + 𝑘𝑜𝑛

𝑑 ])

 
 

 

𝑅̂ = (

𝑟𝑆 0 0 0

0 𝑟𝑆 0 0

0 0 𝑟𝑊 0

0 0 0 𝑟𝑊

)  ;  Γ̂ = (

𝛾
𝑆

0 0 0

0 0 0 0

0 0 𝛾
𝑆

0

0 0 0 0

) 

(12) 

We note that we cannot differentiate between all four possible states experimentally, as two of 

these result in similar mRNA behavior. Depending on parameter choices, the indistinguishable pair 

could be states 1 and 2 (assuming the effect of transcription is stronger regardless of degradation state), 

or states 1 and 4 (assuming the effect of transcription to be similar to that of degradation). Since this is 

a living biological system, it is safe to assume the former case. 

In practical terms, the first and second states result in transcriptional bursts and cannot be 

discerned neither in simulation nor experiments. The third state results in negative bursts when the 

degradation rate is larger than the weak transcriptional rate, while the fourth state results in a quiescent 

state of apparent inactivity when both transcription and degradation rates are sufficiently small. 

Therefore, in order to account for the negative-burst finding, we are left with three discernible states, 

forming a model similar to the three-state random telegraph noise (RTN) model46 (Figure 11 a).  

To test this new model, we implemented both it, and the traditional two-state model, using 

kinetic Monte Carlo simulations47. We simulated time-lapse sequences, modelling the number of 

transcripts as a function of time. Both simulations were run for 3600 steps (corresponding to 1 hour, 

simulated at 1 sec intervals), with sampling every 10 steps to emulate the sampling conditions of the 

experimental data. The transition parameters between states for the two-state model, and for the 

transcriptional burst part of the three-state model are given in table 5.  
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Kinetic transition Mathematical 
Notation 

Biological meaning Value [s-1] 

Closed promoter -> Open 
promoter 

𝑘𝑜𝑛
𝑡  RNAP association 0.0027 

Open promoter -> Closed 
promoter 

𝑘𝑜𝑓𝑓
𝑡  RNAP disassociation  0.0023 

Open promoter -> mRNA 𝑟𝑆 Strong transcription   0.04 

Close promoter -> mRNA 𝑟𝑊 Weak transcription 0.003 

mRNA -> Quiescent state 𝑘𝑜𝑓𝑓
𝑑  Halted degradation  0.2 

Quiescent state -> mRNA 𝑘𝑜𝑛
𝑑  Resumed degradation  0.4 

mRNA degradation 𝛾
𝑆
 Degradation rate 0.011 

Table 5. Parameters used for kinetic modelling 

The association/disassociation rates were gathered from the work by Sanchez et al45 , and are 

valid for the pLac promoter in E. coli. These rates do not represent empirical biological kinetic data, as 

no in-vivo association/disassociation rates could be found for the T7 RNAP in literature. Instead, these 

should be regarded as qualitative only, representing the order of magnitude to the association of a 

protein (e.g. RNAP, transcription factor) to a promoter, in a crowded cellular environment. 

The transition parameters into and out of the degradation burst state were set such that the 

distribution of number of mRNA molecules would be similar between the two models, meaning that 

there should be no apparent change in the number of transcripts (Figure 11 b).  

To confirm that a three-state RTN model is better suited for describing our experimental data, 

we used two different methods to compare its performance to that of the two-state model. The first test 

is rooted in telegraph processes theory, which provided the basis for the historic two-state model48,49. A 

common analysis of signals generated from such processes is based on the power spectral density 

(PSD), which is proportional to the square of the Fourier transform of the signal50. To generate a suitable 

signal from our data, we concatenated the slopes of all identified segments from all signals (under an 

assumption of memoryless noise), generating a signal resembling a telegraph process. We calculated 

the PSD for both simulations and experimental data (Figure 11 c). From a heuristic viewpoint, the 

experimental PSD bears a closer similarity to that of the three-state model in the low frequency range, 

as compared with the PSD of the two-state model, providing further evidence that the three-state model 

provides a better description for the experimental data. 

For the second test, we analyzed the simulated sequences in the same manner used for the 

experimental data, to generate amplitude histograms (Figure 11 d-e) (3 state and 2-state respectively). 

The most notable difference between the two models lies in the distribution of negative amplitudes. 

While the two-state model produces a Gaussian distribution centered at -1, representing constant 

degradation, the three-state simulation generates a more flattened, spread-out distribution, similar to the 

experimental data (Figure 4 d).  
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Figure 11. Three state model analysis. 

(a) Model schematic showing transition possibilities between the three experimentally discernible states. (b) 

Number of mRNA molecules arising from simulations of three-state (orange) and two-state (blue) models (n = 

300). (c) Power spectrum density of experimental Qβ-5x, three-state model and two-state model. (d-e) Intensity 

amplitude analysis for the three-state model (npos=769, nneg=1266, nnon-classified=1480) (d) and two-state model 

(npos=156, nneg=691, nnon-classified=584) (e). 

 

Chapter 4: Section Summary 
In the present study, we aimed to learn the kinetic features of paraspeckles and other, similar 

nuclear bodies via a synthetic bacterial system. We used the pT7 promoter in bacteria to express 

synthetic lncRNA (slncRNA) molecules that incorporated several RBP binding sites, which together 

with their cognate RBP formed fluorescent speckles in the cell poles. Our speckles were composed of 

two different types of slncRNA molecules or binding-site cassettes: a new Qβ-5x-PP7-4x and the 

common-place PP7-24x cassette. Our findings reveal that at steady-state, speckles are likely composed 

of 15-30 RBP bound slncRNA molecules. Changes in speckle fluorescence is characterized by 

exponentially distributed random bursts of either positive or negative amplitudes, spaced by periods 

where no classifiable change in speckle fluorescence can be made. To our knowledge there was one 
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previous study in bacteria that tracked synthetic fluorescent speckles in single cells9. In that study, the 

RNA component was an mRNA gene that was labelled at its 5’UTR by a ~5 kbp cassette of 96 binding 

sites for the phage coat protein for MS2, which in turn self-assembled into speckles that only exhibited 

bursts of increasing fluorescence intensity that were attributed to bursts of transcriptional activity. In 

this study, we identified both positive and negative bursts in approximately equal proportions in 

synthetic speckles composed of two significantly shorter RNA molecules. As in the Golding et al.9 

paper, we also interpret positive bursts as a near simultaneous addition of multiple fluorescent slncRNA 

molecules to the speckle resulting from bursts of transcriptional activity. By contrast, a negative burst 

can be interpreted as a simultaneous removal of slncRNA molecules from the speckle. It is therefore 

reasonable to conclude that negative bursts may correspond to bursts of degradation. 

 Unlike transcriptional bursts, which have been attributed to kinetic and structural nucleoid-

related processes, there is no particular reason why degradation of speckle signal in bacteria should also 

present itself in bursts. There seem to be two possible kinetic scenarios; either slncRNA molecules are 

actively degraded in an intermittent fashion directly within a given speckle, or the speckle itself sheds 

intermittently a number of slncRNA molecules which are then further degraded in the cytoplasm. The 

implications of the first scenario are that RNase and potentially other major degradation enzymes may 

also be expressed in bursts themselves leading to an intermittent set of degradation events. The second 

scenario implies that speckles are nano-particles which are comprised of entangled protein-RNA 

complexes that are effectively phase-separated from the rest of the cytoplasm and thus do not allow 

access to other molecular species such as the ribosome or degradation enzymes. When considering the 

increased negative skewedness observed in the non-classified set of events for the 24x lncRNA as 

compared with its 5x shorter counterpart (Figure 8 d), the latter scenario offers a more compelling 

explanation. Namely, synthetic speckles that are composed of increasingly complex slncRNA 

molecules (i.e. more binding sites) are likely to be more entangled leading to a slower release of the 

molecules from the biomolecular complex as compared with their shorter counter parts. An increased 

entanglement due to binding site number is also consistent with the wider distribution for the estimated 

“number of slncRNAs” within speckles observed for the 24x as compared with the shorter example 

(Figure 5 e-f), and the lack of negative bursts observed for the 96x speckle by Golding et al.9.  

Observing both positive and negative fluorescent bursts and considering the presence of a phase 

separated compartment which stores RNA and proteins led us to a new modelling scheme for the 

regulation of gene expression. While a two-state RTN kinetic model suffices for describing the mRNA 

distribution resulting from bursty gene expression process, in order to take the effects of speckles into 

account a multi-state RTN model is needed. Here, the presence of the speckles was accounted for by 

adapting the two-state model to one which included an additional state where degradation is a rare 

event. This, in turn, led to the desired three-state RTN prediction. Consequently, this prediction may be 

relevant to not only this synthetic context, but to natural systems as well. This, therefore, become 

particularly pertinent in lieu of many recent observations in Eukaryotes, which suggests that intra-
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cellular liquid-liquid phase-separation into molecularly isolated compartments51 (e.g. paraspeckles1–3, 

nuclear speckles4, etc.)  may be a common and generic cellular phenomenon that affects the regulation 

of gene expression. Thus, bursting may not just be a process that characterizes transcription but may be 

characteristic of other molecular processes related to the regulation of gene expression as well.  

Finally, we believe that the ability to reach the negative burst finding is due in large part to our 

new binding-site cassette design. Our cassette is ~450 bps in length, which is about 5 times shorter than 

the 24x, and an order of magnitude shorter than the cassette used by Golding et al.9.  Comparison of 

our cassette to the results generated by the PP7-24x indicates that our cassette is likely to be fully 

occupied by RBPs, as compared with <50% occupancy for the PP7-24x, as has been previously 

reported34.  
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Abbreviations and Notations 
 

SPT Single Particle Tracking 

FBM Fractional Brownian Motion 

CTRW Continuous Time Random Walk 

(TA)MSD (Time Averaged) Mean Square Displacement 

CNN Convolutional Neural Network 

H Hurst exponent 

D Diffusion coefficient 

MT-network Multi-Track network 

ST-network Single-Track network 

STD Standard deviation 
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Chapter 5: Background 
 

Due to the stochastic nature of diffusive processes, a single trajectory does not uniquely 

correspond to a type of diffusion, unless long enough to show asymptotic behaviour. For example, 

Fractional Brownian Motion (FBM) and Continuous Time Random Walk (CTRW) can both produce 

highly similar motion characteristics15,17, yet arise from two completely different underlying physical 

mechanisms. It is therefore usually only possible to assign a probable mechanism by examining either 

very long trajectories or multiple, intermediate-length trajectories. This analysis is most frequently 

based on the mean squared displacements (MSD) curves, which describe the average spatial distances, 

〈𝑟2〉, within a trajectory measured between increasingly long time lags, ∆𝑡 or 𝜏52. This analysis has the 

benefit of being simple to apply, and the function scales with time in the form of a power law 〈𝑟2〉 ∝

𝜏𝛼. For normal diffusion (i.e., pure Brownian motion), 𝛼 = 1; whereas, anomalous diffusion can be 

subdiffusive (𝛼 < 1), or superdiffusive (𝛼 > 1), (Figure 12)53,54. While MSD is the most commonly 

used approach, it is worth noting that other methods can also distinguish between diffusion types and 

extract the power law parameter, 𝛼; e.g. mean maximal excursion55, and power spectral density 

analysis56.  

Several families of frequently-encountered processes leading to anomalous diffusion include: 

FBM, CTRW, random walk on a fractal, and Lévy flights15. Classifying a trajectory to a diffusion model 

can reveal a great deal about the physical environment being investigated; for example, FBM might 

imply a crowded cellular environment, while CTRW can indicate an environment containing traps57. 

Existing methods for identification of the best-fitting diffusion model fall into two categories: 

qualitative (searching for ergodicity-breaking behaviour or spatial constrains during motion), and 

quantitative (p-variation test, Gaussian-breaking parameters). Problematically, many of these criteria 

concern asymptotic behaviour, and therefore require long single trajectories or hundreds of moderate-

length trajectories from the same environment57,58. Additionally, these methods are ill-suited in cases of 

subordinated diffusion, where more than one mechanism determines the type of motion59,60. 

Yet another issue is how to best determine model-specific parameters from a dataset for a given 

theoretical model. For example, using only the first two time lags of the MSD curve to determine the 

diffusion coefficient in pure Brownian trajectories was shown to be preferable under most conditions 

because it was more robust to noise61. Identifying the optimal approach for the relevant parameters 

describing subdiffusive motion has not yet been investigated, despite known inaccuracies in applying 

traditional methods to deficient datasets53,54. A particular interest is how to make use of very short 

trajectories to accurately extract subdiffusive parameters, i.e. those produced by single-molecule 

fluorescence microscopy experiments using genetically encoded labels. While these probes are 

seemingly ideal for reporting on the biological environments62, their limited photostability and 

brightness typically produces many short trajectories. The key challenge presented by these experiments 
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is how to infer material properties of biological systems and transport properties of single biomolecules 

from very short trajectories in which the asymptotic behaviour is experimentally inaccessible. 

The applicability of classical methods for accurately extracting the underlying parameters in 

this regime has been somewhat limited, thus necessitating a more reliable approach. Machine-learning 

algorithms, and in particular deep learning63, excel at extracting concealed correlations in large datasets 

which can then be used to create a predictive tool for analysis of similar data64. This makes the problem 

of characterizing single-particle diffusion well suited for deep-learning analysis.  

 

 
Figure 12. Mean Square Displacement curves. 

Mean Square Displacement (MSD) curves for sub-, super- and Brownian diffusion. 

 

Chapter 6: Methods 

 

Diffusion trajectories 
We focus on three diffusion models which are often encountered in SPT experiments: Brownian 

motion, FBM and CTRW (Figure 13). Training a neural network generally requires tens of thousands 

of data samples to achieve high performance. To answer this requirement, we simulated trajectories 

governed by each of the three motion models. 

 

Brownian Motion 

Brownian motion was generated as a random walk process with independent identically 

distributed (IID) Gaussian steps (eq 13) with {𝑠𝑖, 𝑖 ≥ 1} a zero-mean Gaussian process, and 𝑁𝑡 the total 

number of steps taken up to time 𝑡. 

𝑥(𝑡) =∑𝑠𝑖

𝑁𝑡 

𝑖=1

 

 

(13) 
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Fractional Brownian Motion 

Where 𝑥𝑡 , 𝑥𝑠 are positions in the trajectory and α is the anomalous exponent (twice the Hurst 

exponent). Simulated FBM trajectories were generated using the circulant embedding algorithm65 

which is a fast simulation method for stationary Gaussian processes on uniformly spaced grids which 

is based on Fourier transformations. 

 

Continuous Time Random Walk 

 CTRW can be regarded as a combination of random walks in both time and space, with 

temporal ‘steps’ (waiting times) drawn from a heavy-tailed distribution with an asymptotic power-law 

behavior (eq. 15). 

ℎ(𝑡)~
1

𝑡𝛼+1
, 𝑡 → ∞ (15) 

This general formulation has led to many variations over the years66; we chose to implement 

the uncoupled CTRW simulation presented by Fulger and coworkers67 due to its relative simplicity and 

speed. In short, spatial increments are drawn from a symmetric 𝛼-stable Lévy distribution (in our case, 

𝛼 = 2, corresponding to a Gaussian distribution), and temporal increments are drawn from a Mittag-

Leffler distribution. The two distributions are then matched to produce a spatio-temporal trajectory 

comprising of a power-law distribution in dwell times.  

 

Experimental trajectories 

For experimental validation of our method, we performed three experiments, each illustrating 

a different diffusion mechanism: diffusion of fluorescent beads in actin networks, demonstrating FBM, 

where the Hurst exponent, H, varies as a function of gel-mesh density68,69; diffusion of fluorescent beads 

in a water-glycerol solution, demonstrating pure Brownian motion70; and diffusion of TrkB and p75 

receptors along the plasma membrane of HEK293T cells, demonstrating FBM subordinate to CTRW71. 

The experimental data is available online72 

 

𝑥(𝑡) is an FBM process if it is a continuous Gaussian process with a mean of zero, 

and it satisfies the following covariance function (eq. 14): 

𝑐𝑜𝑣(𝑥𝑡, 𝑥𝑠) =
1

2
(|𝑡|𝛼 + |𝑠|𝛼 − |𝑡 − 𝑠|𝛼), 𝑡, 𝑠 ≥ 0 

(14) 
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Figure 13. Diffusion models. 

(a-d) Simulated trajectories illustrating diffusion processes discussed in this work. (a) Brownian motion. (b) 

Continuous time random walk. (c) Subdiffusive FBM. (d) Superdiffusive FBM 

 

SNR definition 
We define the signal-to-noise ratio (SNR) of a simulated trajectory 𝑥𝑠𝑖𝑚 as the standard 

deviation of signal increments divided by the standard deviation of the Gaussian noise added to the 

signal. 

 

𝑆𝑁𝑅𝑠𝑖𝑚 ≜
𝑠𝑡𝑑 (

𝑑𝑥𝑠𝑖𝑚
𝑑𝑡

)

𝑠𝑡𝑑(𝑁)
 

(16) 

 

where 𝑁 is a zero-mean Gaussian process. An example for SNR=1,5 can be seen in (Figure 14). 

 Experimental SNR is defined as the standard deviation of signal increments of a diffusing agent 

𝑥𝑒𝑥 divided by the standard deviation of signal increments of an immobile agent 𝑥𝑓𝑖𝑥𝑒𝑑 from the same 

environment. 

𝑆𝑁𝑅𝑒𝑥𝑝 ≜
𝑠𝑡𝑑 (

𝑑𝑥𝑒𝑥
𝑑𝑡
)

𝑠𝑡𝑑 (
𝑑𝑥𝑓𝑖𝑥𝑒𝑑
𝑑𝑡

)

 (17) 

 

 
Figure 14. Simulated trajectories containing noise. 

(a-b) Ground truth trajectory (blue) with added localization precision (orange) (a) SNR = 5 (b) SNR = 1. 
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Mean square displacement calculation  
Time averaged mean squared displacement (TAMSD) was calculated as: 

𝛿2(𝜏) =
1

𝐿
Δ𝑡

∙ ∑(𝑥(𝑚Δ𝑡 + 𝜏) − 𝑥(𝑚Δ𝑡))
2

𝐿
Δ𝑡

𝑚=1

 (18) 

Where 𝑥(𝑡) is a trajectory of length L, taken at time intervals Δ𝑡. 

Ensemble MSD was calculated as the average of TAMSDs obtained from different trajectories. 

For fractional Brownian motion, 𝛿2(𝜏) ∝ 𝜏2𝐻, therefore the Hurst exponent (H) was estimated by 

fitting log (𝛿2(𝑙𝑜𝑔(𝜏)) to the linear function 𝑎 + 𝑏𝑥, where 𝑏 = 2𝐻. For Brownian motion, 𝛿2(𝜏) ∝

2𝐷𝜏 (for the one-dimensional case), therefore the diffusion coefficient was estimated by fitting the first 

5 time-lags of log (𝛿2(𝑙𝑜𝑔(𝜏)) to the linear function 𝑎 + 𝑏𝑥, where 𝑎 = 2𝐷. 

 

CNN network architecture 
Network architecture is based on the design proposed by Bai and co-workers73. In brief, four 

sets of convolution blocks with different filter sizes [2, 3, 4, & 10], operate in parallel (Figure 15 a). 

Each block consists of 1D dilated causal convolution layers with increasing dilation factors (Figure 15 

b). This setup is meant to find correlations spanning multiple time scales of unknown length. The 

specific architecture used was selected in a process of trial and error, based on classification and 

regression performance on simulated data.  

Each net was constructed for a specific input trajectory length, namely, by the inclusion of 

additional convolution layers. For example, the network designed for 1000-step trajectories, relative to 

the 100-step network has an additional convolution block with a filter size of 20. 

For the Multi-Track (MT) networks, the 1D convolution layers were replaced by 2D 

convolution layers with dilation factors operating on the temporal axis only (i.e. for an input matrix, M, 

with the shape [Number of tracks × Number of steps] the dilation factor will be [1 × d]). 

Classification networks for differentiating between discrete motion types were trained with 

categorical cross entropy loss, with the following mathematical formula: 

𝐿 = −
1

𝑁
∑∑1𝑦𝑖∈𝐶𝑐𝑙𝑜𝑔𝑃𝑚𝑜𝑑𝑒𝑙[𝑦𝑖 ∈ 𝐶𝑐]

𝐶

𝑐=1

𝑁

𝑖=1

 

(19) 

The double sum is over the observations 𝑖, and the categories 𝑐 whose number is C. The term 1𝑦𝑖∈𝐶𝑐 is 

an indicator function of observation i belonging to the category c. The term 𝑃𝑚𝑜𝑑𝑒𝑙[𝑦𝑖 ∈ 𝐶𝑐] is the 

predicted probability that observation i belongs to the category c. 

Regression networks, which estimate a continuous variable, were trained with mean squared 

error loss, with the following mathematical formula: 

𝐿 =
1

𝑁
∑(𝑦𝑖 − 𝑦𝑖

𝑝
)
2

𝑁

𝑖=1

 

  (20) 
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where 𝑦𝑖 is the ground truth and 𝑦𝑖
𝑝

 the predicted value of observation i. 

Networks were implemented and trained using Keras (Version 2.2.4) with TensorFlow backend 

version (1.8.0) in Python (version 3.5). Other packages used: NumPy (version 1.14.5), SciPy (version 

1.2.1), Stochastic (version 0.4). Training was done on NVIDIA GeForce Titan GTX graphics card in a 

Windows environment. 

 

 
Figure 15. Neural network architecture. 

(a) Schematic of basic network structure. (b) An example convolution block with filter size = 2 and dilation 

factors 𝑑 = 1,2,4.  

 

Fluorescent beads in Glycerol solution  
100 nm green and 200 nm red fluorescently labelled microspheres (Life Technology) were 

diluted into 40% glycerol in water (v/v). From the mixture 1 µL was pipetted onto a glass coverslip and 

pressed onto a glass slide and sealed with clear nail polish. Both surfaces were pretreated with a ~20 

mg/mL casein solution to decrease the propensity for sticking of the fluorescent beads to the glass. 

Three fluorescent filters were used in combination with different excitation-laser combinations to image 

the green, red, and both beads at once. Green-bead images were recorded with a 488 nm excitation; red 

beads were imaged with a 650 nm laser. Imaging was done using a multi-bandpass filter set 

(ZT405/588/561/647rpc, ZET405/488/561/647m, Chroma). All imaging was done using a standard 

inverted microscope system (TI Eclipse, Nikon) with a 20X objective (Plan Apo NA .75, Nikon) using 

an sCMOS detector (Photometrics). Movies were recorded with 50 ms frames using NIS Elements 

software (Nikon) and analyzed using the Mosaic plugin39 for FIJI41. 

 

Beads in glycerol experiment theoretical calculations 
Theoretical diffusion coefficient values for the diffusion-in-glycerol experiment were 

calculated using the Stokes-Einstein equation for diffusion of spherical particles through a liquid with 

low Reynolds number74. 

𝐷 =
𝐾𝐵𝑇

6𝜋𝜂𝑟
 

   (21) 
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Where: 

𝐷 – Diffusion coefficient [
𝜇𝑚2

𝑠
] 

𝐾𝐵 – Boltzmann constant [
𝑚2𝑘𝑔

𝑘∙𝑠2
] 

𝑇 – Temperature [𝑘] 

𝜂 – Viscosity [
𝑘𝑔

𝑚∙𝑠
] 

𝑟 – Particle radius [𝑛𝑚] 
 

The experiments were conducted in room temperature with beads of two different sizes, 100,200 [𝑛𝑚] 

in a solution of 40% glycerol in water, giving a viscosity coefficient of 0.00372 [
𝑘𝑔

𝑚∙𝑠
] 75. 

 

𝐷100[𝑛𝑚] =
𝐾𝐵𝑇

6𝜋𝜂𝑟
=

1.3806 ∙ 10−23 ∙ 293

6𝜋 ∙ 0.00372 ∙ 100 ∙ 10−9
= 5.722 ∙ 10−13 [

𝑚2

𝑠
] = 0.57 [

𝜇𝑚2

𝑠
] 

 (22) 

𝐷200[𝑛𝑚] =
𝐾𝐵𝑇

6𝜋𝜂𝑟
=

1.3806 ∙ 10−23 ∙ 293

6𝜋 ∙ 0.00372 ∙ 200 ∙ 10−9
= 2.884 ∙ 10−13 [

𝑚2

𝑠
] = 0.28 [

𝜇𝑚2

𝑠
] 

 (23) 

 

Fluorescent beads in F-actin networks 
Experiments were performed by the lab of Prof. Yael Roichman, Tel Aviv University68.  

F-actin gels are described as networks of semiflexible polymers. We determine the mesh size 

from CA, the concentration of the actin monomer (G-actin), according to 𝜉𝑠 = 0.3√𝐶𝐴  76. G-actin was 

purified from rabbit skeletal muscle acetone powder77, with a gel filtration step, stored on ice in G-

buffer (5 mM Tris HCl, 0.1 mM CaCl2, 0.2mM ATP, 1 mM DTT, 0.01% NaN3, pH 7.8) and used 

within two weeks. 

The concentration of the G-actin was determined by absorbance, using a UV/Visible 

spectrophotometer (Ultraspec 2100 pro, Pharmacia) in a cuvette with a 1 cm path length and extinction 

coefficient of ϵ290 = 26, 460 M-1cm-1. Polystyrene colloids with radii of α = 0.55 µm (Invitrogen, lot 

#742530) were pre-incubated with a 10 mg/ml BSA (bovine serum albumin, Sigma) solution to prevent 

nonspecific binding of protein to the bead surface. 

Glass samples were prepared from glass coverslips (diameter, 40mm) coated with methoxy-

terminated PEG (Polyethylene glycol, Mw=5000 g/mol, Nanocs) to prevent F-actin filaments from 

sticking to the chamber walls. After polymerization sample was loaded into a glass cell and left to 

equilibrate for 30 min at room temperature. 

 

Tracking of fluorescent transmembrane receptors in HEK cells 
Experiments were performed by the labs of Prof. Yael Roichman and Prof. Eran Perlson, Tel Aviv 

University71. 

Preparation of expression plasmids for the study of membrane receptors   

TrkB‐GFP plasmid, encoding rat full‐length TrkB fused to EGFP at the C'‐terminus under a 

CMV promoter was gifted by Rosalind Segal (Harvard University). p75‐GFP plasmid, encoding rat 
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p75NTR fused to EGFP was a gift by Francisca C Bronfman (Pontifical Catholic University of Chile). 

The pLL3.7‐ CMV‐EGFP 3rd generation lentiviral vector (Addgene #11795) was gifted by Uri Ashery 

(Tel Aviv University). LV‐TrkB‐GFP and LV‐p75‐GFP were cloned by inserting TrkB and p75 from 

TrkB‐GFP and p75‐GFP into pLL3.7‐CMV‐EGFP downstream of the CMV promoter.  

Total Internal Reflection Fluorescence (TIRF) microscopy 

Live cell TIRF imaging was done on a FEI‐Munich iMic‐42 digital microscope equipped with 

fast 360° spinning beam scanner to allow even illumination of the entire diameter of the back focal 

plane of the objective. A 100x Olympus 1.49 numerical aperture TIRF objective was used for objective 

based TIR. As illumination source, 4 solid‐state laser lines at 405, 488, 561 and 640nm were used with 

maximum output power of 50mW each. Control of stage, excitation and acquisition parameters were 

via Live Acquisition 2 software. Images were captured using Ixon897 EMCCD camera (Andor). In all 

live imaging experiments, a 37°C, 5% CO2 and humidity conditions were kept using a custom 

environmental control system (Live Imaging Services). For SPT experiments, exposure time was 25 

milliseconds with 1 millisecond delay. Laser intensities used were 40% and 70% for 561 and 488 

respectively. TIRF angle varied for each plate but was between 2.480‐2.500. all movies acquired were 

1500 frames long.   

 

 

Chapter 7: Results 
 

Classification network 

Simulated data 

We trained a neural network to classify each trajectory as one of the three diffusion models 

described above. The network was trained on ~300,000 simulated trajectories of 100 steps, with a 

normally distributed localization error and a signal-to-noise ratio (SNR) of four. For FBM and CTRW, 

which are parameter dependent, each simulated trajectory was generated with a random parameter 

drawn from a uniform distribution in the range [0,1]. Both models converge to Brownian motion for 

specific parameter values (0.5 for FBM and 1 for CTRW); to account for this, trajectories generated 

with a parameter in the range [0.4,0.6] for FBM, and [0.9,1] for CTRW, were labeled as Brownian 

motion for network training purposes.  

During testing, the network receives the derivatives of trajectories in the form of two vectors 

(i.e., dx and dy data), and outputs the probabilities of each being associated with one of the included 

diffusion models (Figure 16). This configuration can be used to uncover or evaluate motion 

characteristics incurred in orthogonal directions, such as those incurred for diffusion in a constraining 

geometry22.  
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Figure 16. Classification network schematic representation. 

The net input is the position coordinates of a single trajectory, and outputs the model-classification. 
 

The performance of the trained network was evaluated using realistic trajectory simulations 

with various levels of localization precisions.  

In terms of accuracy, the classification net performs well on simulated data over a large range 

of SNRs and diffusion-model parameters (Figure 17), including cases in which the diffusion approaches 

pure Brownian motion, and are recognized as such by the network. 

 

Figure 17. Classification network results. 

Heat maps representing the percentage of correct classification as a function of model parameter and SNR. 

Each pixel corresponds to 200 simulated trajectories. Left – FBM trajectories, right – CTRW trajectories. 
 

In addition to the above tests, we quantified network performance using confusion matrices 

which show specifically when the network errs. The tables were produced by simulating a set of 300 

trajectories, 100 for each considered diffusion model. Parameters for CTRW and FBM were selected at 

random from the range of values that should not result in Brownian motion 

(α∈[0.05,0.9],H∈[0.05,0.45]∪[0.55,0.95]), in order to maintain correct statistics in the data set. This 

dataset was then analyzed by the net under various levels of localization noise. 
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 Ground truth 

FBM Brownian CTRW 

N
et
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SNR = ∞ 

FBM 84 14 2 

Brownian 0 99 1 

CTRW 5 2 93 

 

SNR = 10 

FBM 82 16 2 

Brownian 0 99 1 

CTRW 6 3 91 

 

SNR = 5 

FBM 80 17 3 

Brownian 0 99 1 

CTRW 9 5 86 

 

SNR = 2 

FBM 77 20 3 

Brownian 26 74 0 

CTRW 28 12 60 

 

SNR = 1 

FBM 67 31 2 

Brownian 99 1 0 

CTRW 69 23 8 
Table 6. Confusion percentages for classification by single-track network 

The confusion matrices show the identification network is accurate even at relatively low SNR 

levels, beginning to falter at SNR=2. Another important result is the uncertainty between FBM and 

Brownian motion, even with no addition noise. This is likely due to the fact that FBM is a generalization 

of Brownian motion, with certain parameter choices causing the network to err between the two. This 

occurs despite the fact that the Brownian motion parameter range of the Hurst exponent, [0.45-0.55], 

was not used during generation of the dataset. To illustrate this, we show below the confusion table for 

SNR=∞, but for a data set wherein H was selected from the parameter range – [0.05,0.35] ∪

[0.65,0.95]. 

 

 

 

Ground truth 

FBM Brownian CTRW 

Network prediction 

SNR = ∞ 

FBM 93 7 0 

Brownian 0 100 0 

CTRW 8 1 91 
Table 7. Confusion percentages for classification by the single-track network for a subset of Hurst parameters 

Interestingly, the net finds no ambiguity between CTRW and Brownian motion. This possibly 

has less to do with parameter choices, but rather with the extracted features learned by the net for 

classification. During the training phase, each filter learns different features of the signal, CTRW is 

characterized by long waiting periods between jumps, which results in the diffusing particle being 

transiently ‘stuck’. It seems most likely that the network found this significant, as trajectories displaying 

some apparent ‘sticking’ being most frequently classified as CTRW. A further indication can be found 
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in the confusion table for SNR=1, where the high noise masks the signal itself, thus appearing more 

FBM in character to the net. 

 

Experimental data 

On experimentally-obtained trajectories (Figure 18), the net’s classification agrees with the 

expected diffusion models: FBM for bead in a crowded actin gel (250 nm mesh size), Brownian motion 

for bead in 40% glycerol solution, and FBM combined with CTRW for transmembrane protein diffusion 

(TrkB and p75 receptors).  

 

Figure 18. Sample of experimental results. 

Network analysis for three experimentally-measured trajectories; left to right: a fluorescent bead diffusing in 

an actin gel demonstrating FBM; a fluorescent bead diffusing in a glycerol-water mixture, demonstrating 

Brownian motion; and protein diffusion on a live-cell membrane exhibiting a combination of FBM and CTRW. 

 

Analysis of the individual datasets reveals a more complex image of the diffusion modes. For 

beads diffusing in glycerol solution (Figure 19 a), the classification is not perfect, showing nearly 

similar numbers of FBM and Brownian motion (the minor CTRW population represents beads stuck to 

the surface unable to move, these do not appear in the H-estimation analysis). The fault most likely lies 

in a combination of precision errors and other unknown factors relating to the experiment (e.g. effects 

of fluid dynamics). Analysis using the Hurst exponent regression network shows a population centered 

around H = 0.6 with standard deviation of 0.07 (Figure 19 b), in agreement with the classification 

results (i.e. approximately half classified as FBM, and half as Brownian motion). 

The transmembrane protein diffusion experiment presents a unique challenge in that the motion 

does not fit into any one anomalous diffusion model.  For this reason, we cannot simply set the highest 

probability in the network output as the selected model, but instead must look at probabilities 

themselves (Figure 19 c). X, Y axes represent probabilities of being assigned to FBM and CTRW 

models, respectively. The data closely follows a 𝑦 = −𝑥 trend line, with clusters of tracks being 

scattered around (x,y) = (0.5,0.5), or (x,y) = (1,0) From this we can conclude: The network identifies 

features from both models, while almost entirely disregarding the Brownian motion model (otherwise 
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the sum of 𝑃𝑓𝑏𝑚 and 𝑃𝐶𝑇𝑅𝑊 would not be one); The network shows a bias towards FBM as was 

previously shown on simulated data (confusion tables). 

 

 

Figure 19. Classification of experimental datasets. 

(a-b). Classification of bead trajectories diffusing in a glycerol-water mixture. (a) Classification. (b) 

Determination of the Hurst parameter for the subset of trajectories classified as FBM. (c) Classification 

probability of protein trajectories diffusing on membrane surface. Results presented are the probabilities of 

being identified as FBM model or CTRW model, where 𝑃𝐵𝑟𝑜𝑤𝑛𝑖𝑎𝑛 =  1 – 𝑃𝐹𝐵𝑀 + 𝑃𝐶𝑇𝑅𝑊  . 

 

 

Single-track Hurst exponent regression network 

Simulated data 

For estimation of the Hurst exponent, the key parameter in FBM78, we trained a set of neural 

networks to estimate a continuous variable. When estimating a continuous variable, we need not alter 

the training process or network architecture, but rather only the loss function to fit a continuous estimate. 

Training was performed on ~150,000 simulated tracks with randomly selected Hurst exponents in the 

range [0.05,0.95]. Two separate net types were trained: first, an array of single-track networks (ST-

networks), which receive as input the autocorrelation of the derivative of a single 1D trajectory, known 

as the velocity autocorrelation. Each network in the set was optimized for different track lengths: from 
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25 to 1000 steps. The networks were tested on simulated data with various levels of added noise and 

compared to time averaged MSD (TAMSD) estimation. On simulated data, the ST-networks 

outperforms TAMSD in estimation accuracy, the number of steps required to achieve the same 

confidence interval, and robustness to noise (Figure 20). The distribution and mean of estimated Hurst 

exponents for simulated 100 step-tracks with H = 0.2 is shown in Figure 20a, and for a range of 

parameters in Figure 20b. At finite track lengths, the TAMSD is negatively biased away from the true 

parameter; however, at long track lengths (>2000 steps), converges to the true value.  

Much like MSD analysis, the net’s performance improves when more data is available, i.e. 

additional steps are used for analysis (Figure 20 c). Thus, when a 500-step trajectory is available, it is 

best to use a net designed for that many steps, although sub-trajectories can be given to nets generated 

for shorter track lengths. 

 

 

Figure 20. Hurst exponent estimation network – simulated data. 

(a). Comparison of the 100-step, single-track network to Time Averaged MSD (TAMSD): estimation of the 

Hurst exponent (0.2) for 200 simulated trajectories. Inset shows the average estimated values and standard 

deviations. (b) Comparison over a range of H values [0.05,0.15,..0.95], using 1000 tracks generated with SNR 

= 4, and evaluated by the 100-step network and TAMSD, displayed as the mean and standard deviation. (c). 

Root mean squared error (RMSE) heat maps between estimated H and ground truth per simulated trajectory as 

a function of SNR and track length. Each pixel represents 100 trajectories with random H values in the range 

[0,1].  

 

Experimental data 

Performance of the Hurst exponent-estimation network was tested on experimentally obtained 

trajectories of fluorescent beads diffusing in entangled F-actin network gels with various mesh sizes68, 

allowing control of the Hurst exponent by changing the crowding of the environment (Figure 21 a). 
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In this case, due to the lack of a ground truth, the net’s estimation was compared to that of 

TAMSD and ensemble MSD. Relative to TAMSD (Figure 21 b), the network-estimated values were 

typically slightly higher. For all data points, network estimation is well within the TAMSD standard 

deviation (STD), with its own STD being less than half that of MSD (~0.06 vs 0.15). Compared to 

ensemble MSD (Figure 21 c), network and MSD estimations converge to relatively equal mean values 

(within ±0.01), with the network exhibiting lower standard deviation of the mean (0.001 vs 0.005). 

 

 
Figure 21. Hurst exponent estimation network – experimental data. 

(a) Schematic of beads moving through a crowded actin network, where the ratio of bead size to gel-mesh size 

determines the value of Hurst exponent. (b) Estimated Hurst exponents for experimental data using the net and 

time averaged MSD for truncated 100-step long trajectories displayed as the mean and standard deviation. (c) 

The network and MSD averages for the full-length trajectories shown in (b), ~1000 steps, where the standard 

deviation is estimated by bootstrapping. 

 

 

Multi-track Hurst exponent regression network 
The second version of the Hurst exponent estimation network aims to tackle a problem of high 

practical importance of experiments in which only numerous very short trajectories are available, i.e. 

~10 step, rather than a single long trajectory. This is often the case when tracking fluorescent proteins 

that are quick to photobleach79. To this end, we trained a set of multi-track networks (MT-networks), 

that receive an array of 1D-velocity autocorrelations obtained from 10-step trajectories (Figure 22 a). 

The MT-networks were compared to ensemble MSD estimation on simulated data, where the net 

exhibited better accuracy, standard deviation, and convergence of the mean (Figure 22 b, c). At longer 

track lengths (>100 steps), ensemble MSD analysis surpasses the performance of MT-networks in terms 

of RMSE. 
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Figure 22. Hurst exponent multi-track network. 

(a) Schematic of the MT-network (b) Estimation of single H value from 50 10-step trajectories, analyzed by 

ensemble MSD and the MT-network. (c) RMSE estimation per trajectory set for varying numbers of 10-step 

trajectories. 

 

Diffusion coefficient regression network 

Simulated data 

To estimate the diffusion coefficient from pure Brownian motion trajectories, we trained a 

single net which receives two inputs: the mean and standard deviation of the absolute value of the 

single-frame displacements, note that the MSD operates on the squared displacements of the first few 

time lags.  

Training was performed on ~100,000 tracks of 1000 steps, with diffusion coefficients randomly 

drawn from a uniform distribution in the range [0.1,10] 
𝜇𝑚2

𝑠
. For a single value, the network was found 

to have a lower standard deviation than TAMSD on tracks of only 50 steps (Figure 23 a). When 

considering the range of possible values, the network was discovered to be precise as TAMSD analysis 

on the low to medium range ([0,5] 
𝜇𝑚2

𝑠
), where estimation results converge with those of TAMSD 

(Figure 23 b) and exhibit a similar variance. For this problem, no MT-networks were trained; Multi-

track analysis is unnecessary in this case, due to the fact that Brownian motion is a memoryless process, 

and therefore different tracks from the same population can be concatenated and analyzed in the same 

manner. Using this concatenation method, the network was compared to ensemble MSD estimation on 

collections of 10-steps tracks and was found to be slightly more accurate regardless to the number of 

tracks (Figure 23 c). 
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Figure 23. Diffusion coefficient (D) Network – simulated data. 

 (a) Per-trajectory estimation of 2000 simulated 50-step trajectories with D = 6 [
𝜇𝑚2

𝑠
]. (b) Mean and standard 

deviation for various D values. For each D value, 1000 simulated trajectories with 100 steps were analyzed by 

the network and a linear fit of the first five time lags of the MSD. (c) RMSE for sets of 10-step, D=3 [
𝜇𝑚2

𝑠
] 

trajectories. 

 

Experimental data 

Performance was tested on experimental data of fluorescent beads of two sizes (100 nm and 

200 nm) diffusing in 40% glycerol solution (see work by Hershko et. al70 for complete details of 

preparation). Network estimation shows two different populations, with mean values of 0.29 and 0.54 

𝜇𝑚2

𝑠
, which are similar to predicted theoretical diffusion coefficients calculated from the Stokes-Einstein 

equation – 0.27 and 0.58 
𝜇𝑚2

𝑠
 (Figure 24). Time-averaged MSD estimation of the same data shows 

relatively close values; however the existence of two populations cannot be distinguished with 100-

steps (inset shows the TAMSD estimation using the full 500-step trajectories). 

 

 
Figure 24. Diffusion coefficient (D) Network – experimental data. 

Analysis of two experimentally measured populations of beads diffusing in a glycerol-water mixture were 

analyzed by the network and TAMSD using 100-step truncated segments of the full trajectories. The inset 

shows the result of TAMSD using the entire 600-step trajectories. 
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Chapter 8: Section Summary 
Deep learning is revolutionizing signal analysis owing to its ability to identify complex models 

in large quantities of data, relative simplicity of implementation, (once trained) inference speed, and 

robustness. This revolution is providing tools enabling the extrapolation of biological conclusions from 

seemingly unintelligible measurements. In this work, we take a first step in strengthening single-

particle-diffusion analysis using a set of neural networks for model selection and parameter estimations. 

We have shown these to be more precise than current standard methods on both simulated and 

experimental data, while requiring a smaller number of steps, with increased robustness to noise and 

the advantage of being parameter free. 

The framework we have developed here enables concatenation of different neural nets, 

providing end-to-end localization to classification and parameter estimation. The networks presented 

are computationally inexpensive and can be trained in the span of minutes to several hours to process 

different experimental conditions on a standard GPU-accelerated personal computer. The duration of 

the training process is generally determined by the implementation of the diffusion simulations and by 

the complexity of the diffusion processes themselves. Generally, the amount of training data required 

increases with model complexity. For example, training on CTRW data would require a significant 

number of trajectories to capture rare events, i.e. the long tail of the temporal dwell time distribution. 

Regardless of training complexity, the trained network can analyze hundreds of trajectories in a manner 

of seconds. 

Although easy to use train and use, the networks presented are limited by the data they are 

trained on. The simulations used to build the training set require as input the localization precision levels 

(SNR), total time of the experiment, number of steps, and for the D-network, the pixel size of the 

experimental system. A grossly incorrect selection of one of these can result in erroneous estimation by 

the networks.  

In addition, the parameter estimation networks are constrained to the theoretical model they 

were trained on. For example, attempting to estimate the Hurst exponent for a  more complex case of 

diffusion (e.g. and FBM process subordinated to a second FBM process), will result in incorrect 

estimations.  
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Discussion  
 

In section I we presented an experimental synthetic model system used to as a means to study 

the dynamics of nuclear bodies. Fluorescence tracking of this system revealed both positive and 

negative sharp changes in intensity which we termed bursts. The positive most likely corresponding to 

transcription of new slncRNA molecules and their accumulation in the synthetic speckle, and the 

negative to shedding of molecules back to the cytoplasm to be degraded naturally. We have shown these 

results repeat themselves when using the standard 24x cassette, and our new much shorter design of  

Qβ-5x-PP7-4x. 

We believe that continued exploration of additional designs of such synthetic long non-coding 

RNA molecules has the potential to provide important biophysical insight into both the assembly and 

characteristics of natural membrane-free intracellular compartments in all cell-types. Given the 

increased importance that these compartments are now thought to have in many biological processes, 

constructing and studying such objects synthetically has the potential to provide important biophysical 

insight for this new class of intracellular compartments. 

In section II we presented a deep-learning based system for the analysis of single particle 

trajectories originating from diffusing molecules. The system classifies the input trajectories to the most 

probable theoretical anomalous diffusion model, separating between Brownian motion, CTRW and 

FBM, and estimates the anomalous exponent for the case of FBM, or the diffusion coefficient for the 

case of Brownian motion. We have shown this system to be more accurate than the mean squared 

displacement method which is the standard used today for estimation anomalous diffusion parameters. 

Future work in this area will extend the set of networks to incorporate other motion models, 

e.g. CTRW (estimation of model parameters with an in-depth analysis of the different implementations 

and the effects of non-ergodicity on inference capabilities), motion on a fractal, Lévy flights, and more 

complex cases of subordinate processes. Additionally, other values of interest can be estimated from 

short trajectories such as fluctuations in TAMSD amplitudes, and the shape of the displacement 

probability density function80,81. 

Another significant problem to be addressed in future work is how to best identify transient 

behavior in a trajectory, i.e. switching between diffusion models during motion. For this problem, neural 

networks have shown promising capabilities in their ability to infer data from short trajectories, an 

ability which will be vital for handling transient trajectories. Such an intricate problem might require 

several neural networks working sequentially to identify diffusion types along a trajectory, and extract 

parameters from each part separately in an approach analogous to those already used for object 

classification within images82,83. 
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 תקציר

הציטפולסמה התאית היא הסביבה בה כל הריאקציות התאיות מתרחשות. תכונותיה הפיזיקליות והכימיות בעלות השפעה רבה  

מנסים לשפוך אור על  על מגוון פעולות תאיות דוגמת תקשורת בין תאית, מנגנוני תנועה, קיפול חלבונים ועוד. בעבודה זו אנו 

ומת לב מוגברת בשנים האחרונות, הודות להתקדמות טכנולוגית רבה בתחום  תאיים שזכו לתש-תוך דינמיים  שני תהליכים

 Anomalousתופעת הדיפוזיה האנומלית )בתוך תאים, ו  ( Paraspeckles) גופים גרעיניים המיקרוסקופיה: יצירתם של

Diffusion .) 

. כאמצעי  כבסיסהמשמשת  lncRNAמולקולת תאיים עתירי חלבונים הבנויים סביב -הם גופים תוך Paraspecklesראשית, 

שני סוגים של   הכנסתעל ידי בעלי הרכב דומה  סינתטיים בחיידקים גופים לחקורלחקירת הדינמיקה של מבנה כזה, החלטנו 

lncRNA ה .המתאים היוצרים את הבסיס סינתטיים- lncRNA  של  מעטפתאתרי קישור עבור חלבוני מקודדים ליצירת  

בנוסף התא   .T7(, תחת בקרה של פרומוטר חיידקי מסוג RNA-binding phage-coat-protein (RBP)בקטריופאג' )

  , בתור בסיס שנבדקו lncRNA -סוגי ה עבור שני החיידקי מבטא את חלבוני המעטפת עצמם מחוברים לחלבון פלורסנטי.

מולקולות   נקודות פלורסנטיות המכילות עשרותכאשר מתבוננים על החיידקים תחת המיקרוסקופ, ניתן לראות בבירור 

lncRNA .בהם עוצמת  קב אחרי עוצמת הפלורסנציה לאורך זמן מתגלים מקטעים במע  הקשורות לחלבוני המעטפת התואמים

המרווחים על ידי מקטעי זמן המפולגים בצורה אקספוננציאלית בהם אין שינוי    הפלורסנציה עולה או יורדת בצורה משמעותית,

 Transcriptionalק )דקות בממוצע. אנחנו משייכים את המקטעים החיוביים לפרצים של שעתו  10-בעוצמה, הנמשכים כ   בולט

bursts למסקנה כי הפרצים השליליים   הוביל אותנו(, ומכנים את המקטעים השליליים, פרצים של ירידה בעוצמה. המידע

, וכי הגופים הגרעיניים מהווים הגנה על מולקולות  חזרה לציטופלסמה lncRNAמסמנים השרה של מספר מולקולות 

 מפני פירוק.   lncRNAה

לדיפוזיה יש תפקיד משמעותי בתהליכים ביולוגיים רבים. תצפיות ישירות של תנועות מולקולריות על ידי ניסויי עקיבה שנית,  

נעות בתנועת    תאיות רבות אינן-( הניבו ראיות לכך שמערכות תוךsingle-particle-trackingברזולוציה של מולקולה בודדת )

אפיון של התהליך הפיזיקלי  . (anomalous diffusion) של דיפוזיה אנומלית דיפוזיה רגילה )תנועה בראונית(, אלא בצורה

הגורם לדיפוזיה אנומלית נותר אתגר קשה בתחום, זאת עקב העובדה שהכלים האנליטיים שבהם משתמשים לרוב כדי לאפיין  

  אלו  המשמש לאפיון תהליכיםתהליכים אלו תלויים בהתנהגות אסימפטוטית שאינה נגישה לנו תחת תנאי ניסוי. הכלי המרכזי 

שיטה זו מאפשרת למצוא את הפרמטר  . (mean squared displacementכיום הוא שיטת ממוצע ההפרשים המרובעים ) 

שיטה זו בעייתית מכיוון שמודלים דיפוזיביים שונים בתכלית  שמכיל מידע רב על סוג הדיפוזיה האנומלית, אבל  αהאנומלי 

אפיון מדויק של המודל הדיפוזיבי    אנומלי, דבר המקשה של זיהוי נכון של סוג התנועה. בדרך כלל  לספק את אותו פרמטריכולים  

 אחרים הדורשים שימוש בשיטות אחרות. דורש חישוב של מספר רב של פרמטרים 

דיפוזיה אנומלית. לצורך זאת  על מנת למצוא את המודל הפיזיקלי המתאים הגורם ל אנחנו בחרנו להשתמש בלמידה עמוקה 

יישמנו רשת נוירונים אשר מסוגלת לסווג מסלול תנועה של חלקיק לפי מודל הדיפוזיה האנומלית המתאים, כאשר היא מבדילה  

 Continuous(, והילוך רנדומלי רציף )Fractional Brownian motionבין תנועה בראונית, תנועה בראונית פרקטלית )

time random walk( אנו מדגימים את יישומיות הרשת שלנו גם עבור שיערוך של פרמטר הורסט .)Hurst exponent  )

, על  ( עבור תנועה בראוניתDiffusion coefficientעבור תנועה בראונית פרקטלית, ועבור שיערוך של קבוע הדיפוזיה )

אים שעל מסלולים שנוצרו בסימולציה רשתות  אנו מר מסלולים שנוצרו בסימולציה, ועל מסלולים שנמדדו בצורה ניסיונית.

אלו מדויקות יותר מאשר שיטת ממוצע ההפרשים המרובעים ודורשות מסלולים קצרים יותר על מנת לעבוד. בנוסף, על מידע  

ם. שנאסף באופן ניסיוני, אנו מראים שהרשתות מספקות את אותן תוצאות כמו שיטת ממוצע ההפרשים המרובעי
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