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Self-avoiding wormlike chain model for double-stranded-DNA loop formation
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We compute the effects of excluded volume on the probability for double-stranded DNA to form a loop. We
utilize a Monte Carlo algorithm for generation of large ensembles of self-avoiding wormlike chains, which are
used to compute the J factor for varying length scales. In the entropic regime, we confirm the scaling-theory
prediction of a power-law drop off of −1.92, which is significantly stronger than the −1.5 power law predicted by
the non-self-avoiding wormlike chain model. In the elastic regime, we find that the angle-independent end-to-end
chain distribution is highly anisotropic. This anisotropy, combined with the excluded volume constraints, leads to
an increase in the J factor of the self-avoiding wormlike chain by about half an order of magnitude relative to its
non-self-avoiding counterpart. This increase could partially explain the anomalous results of recent cyclization
experiments, in which short dsDNA molecules were found to have an increased propensity to form a loop.
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I. INTRODUCTION

Cyclization or looping of polymers has functioned as
an important experimental paradigm for probing nanometric
elastic characteristics of polymers for more than half a century
[1–4]. In particular, experimental studies of polymer cycliza-
tion, in conjunction with modern single-molecule approaches
[5,6], have been used extensively in recent years to study
double-stranded DNA (dsDNA). While these studies have led
to important advances in our understanding of the properties of
dsDNA polymer physics, a detailed comparison of the data that
has emerged from the different experimental approaches has
generated surprising and unexpected puzzles such as dsDNA
hyperbendability at short polymer lengths [4,6,7]. Since many
important biological regulatory processes that occur at the
level of the genome are strongly related to DNA looping
or cyclization, it is crucial to develop a detailed theoretical
understanding of dsDNA cyclization that can explain the
seemingly contrasting force extension [5] and cyclization
[4,6,7] experimental observations.

As a result of these experimental works, a consensus picture
of dsDNA as a semiflexible polymer has emerged. At lengths
that are smaller than the Kuhn length [2] DNA behaves like a
rigid rod. At intermediate lengths it behaves like a Gaussian
chain [8]. At large lengths, dsDNA becomes a swollen chain
due to excluded volume effects that emerge from the inability
of DNA to cross itself [2,8]. A recent set of theoretical studies
[9,10] showed that the DNA length, at which the transition
from the ideal to the swollen chain occurs is highly dependent
on the effective aspect ratio of DNA, which we define as the
ratio of the effective width or cross section of DNA w to the
Kuhn length b. As w

b
→ 0, the DNA transition length becomes

larger, which implies that the polymer behaves like an ideal
chain for an ever-increasing length. Alternatively, as w

b → 1,
the DNA transition length shrinks, and the DNA behaves
increasingly like a swollen chain for all lengths. Since DNA
is anisotropic with an effective aspect ratio that is estimated
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to be in the range of 0.03–0.09 [11], the power-law exponent
for the end-to-end distance of DNA was predicted [12] to
not deviate substantially from the Gaussian chain prediction
for lengths as high as ∼100 kb. This prediction was recently
confirmed experimentally, showing a radius of gyration power
law of 0.52 ± 0.02 [10], that is, very close to the Gaussian
chain prediction of 0.5.

The process of DNA cyclization or looping has not been
modeled to date by algorithms that take into consideration the
effective aspect ratio of the DNA. Historically, this process is
quantified by the Jacobson-Stockmayer factor [1], which was
defined as [3]

J = KC

KD

, (1)

namely, the ratio of the equilibrium constant of cyclization
KC to that of bimolecular association KD , assuming the
measurement is carried out on a dilute solution of dsDNA
in standard saline conditions [3]. This definition led Flory,
Shimada, and Yamakawa [13,14] to re-derive the J factor via
equilibrium thermodynamic considerations as the probability
for the two ends of the dsDNA to bond, normalized by the
infinitesimal bonding volume and angular tolerance in order
to avoid any measurable ambiguities that might depend on
arbitrary choices of the bonding volume.

Experimentally, measuring the J factor for DNA has
proven to be quite challenging, but improved technology has
yielded a set of increasingly more precise in vivo [15] and
in vitro measurements [4,7] of this quantity. As a result, an
interesting if not controversial picture had emerged. While the
behavior for longer lengths (L > b) has matched well with the
predictions of the wormlike chain (WLC) model, for shorter
chains where L < b a deviation from the WLC model has been
consistently observed [4,6,7,15]. In this regime, the dsDNA
is expected to behave like a rigid rod whose propensity to
form a loop depends strongly on the elastic or bending energy.
Therefore, as the chain becomes shorter, the probability to
form a loop is expected to decrease exponentially. However,
the experimental data showed that this prediction is not
observed to the extent predicted by the WLC model, and
instead an increasing propensity for bending as compared
with model predictions was detected as the length of the
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DNA chain was decreased below the Kuhn length. Several
theoretical hypotheses were raised to explain this discrepancy,
including localized DNA kinking or formation of melting
bubbles [16,17], and possible subharmonic contributions to
the WLC which render the DNA more flexible at short lengths
[18]. However, these modifications have not been proven
conclusively to be the underlying cause for the experimental
results, and the problem remains open.

In this work we study cyclization of DNA with finite
width. Section II introduces the basic theory that underlies
the definition of the self-avoiding J-factor integral. We utilize
an advanced Monte Carlo algorithm, described in Sec. III,
that is based on the weighted Rosenbluth and Rosenbluth
method, similar to the algorithm used by Tree et al. [12],
to generate ensembles of anisotropic DNA chains up to
5000 bp in length. Our algorithm is able to reproduce the
theoretically predicted behavior of DNA at long lengths. In
Sec. IV we use our algorithm to compute for the first time
the J factor for self-avoiding polymers. In particular, for long
chain lengths the numerically computed J-factor power-law
exponent converges on the scaling law prediction [8,19] of
−1.92 regardless of the width of the chain. For shorter lengths
we find that the chosen definition of the end-to-end bonding
strongly affects the J-factor behavior. We demonstrate that this
function can be systematically changed by choosing various
end-to-end bonding conditions, and leads to an apparent
increased “bendability” effect in this regime as compared with
the WLC model.

II. THEORY

A. The self-avoiding wormlike chain (SAWLC) model

DNA is typically modeled as a discrete semiflexible chain
made of individual and irreducible links of length l, such that
the deviation of one link from its neighboring link depends
strongly on some elastic energy. This class of polymer models
is based on the original work of Kratky and Porod [20] and
is referred to as the class of wormlike chain (WLC) models.
However, except for a few notable exceptions [9,12], the WLC
models do not take into account energetic and entropic effects
that emerge from the cross section or “thickness” of the DNA
double helix.

In the following, we describe each chain by the locations
of its elements, and a local coordinate system defined by three
orthonormal vectors û,v̂,t̂ at each element. The vector t̂ points
along the direction of the chain. For the continuous WLC
these vectors are defined continuously along the chain contour.
For the discrete WLC, the joint locations ri and the local
coordinate systems of the links fully define the chain. We
number the links of a chain in the range 1..N for a chain of N

links, and the endpoints of the links (chain joints) in the range
0..N , where joint 0 is the beginning terminus of the chain [see
Fig. 1(a)]. When mapping wormlike chains to actual dsDNA,
the chain links correspond to DNA base pairs and chain joints
correspond to midpoints between DNA base pairs.

The conventional bending energy for the WLC models is
the elastic energy associated with bending link i ∈ {2, . . . , N}
relative to link i − 1 with angles θi,φi (zenith and azimuthal
angles in local spherical coordinates of link i − 1), which can

(a)

(b)

(c)

FIG. 1. (Color online) WLC and SAWLC chains. A discrete
chain is described by the locations of its joints ri , and a local
coordinate system defined by three orthonormal vectors ûi ,v̂i ,t̂i at
each link. The vector t̂i points along the direction of the ith link. (a) A
WLC chain with five links and link length l = 1. (b) A SAWLC
chain with three links and l = w = 1. ûi and v̂i are not shown.
(c) Representation of an ideally modeled chain with finite width.

be written as

βEel(θi,φi) = a

2
|t̂i − t̂i−1|2 = a(1 − cos θi), (2)

where a corresponds to the bending rigidity of the DNA
chain (assuming azimuthal symmetry), and β = (kBT )−1. It
is important to note that the angles θi,φi are given in the
local coordinate system of the (i − 1)th link. For a specific
configuration of the chain, we introduce the notation {θn,φn}
to denote the set of all the links’ angles of the chain, from link
1 to link n.

To account for the finite thickness of the DNA we introduce
a second energy contribution. We engulf each joint by a “hard-
wall” spherical shell of diameter w. This allows us to model
the final contribution to the elastic energy as a set of hard-wall
potentials. For the simple case in which the chain link length
is larger than the link diameter (l � w), and therefore no two
neighboring hard-wall spheres overlap, the hard-wall potential
energy for the ith chain link can be defined as

Ehw
i ({θi,φi})

=
{∞ joint i overlaps with oneor more joints 0..(i − 1)

0 otherwise .

(3)
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This allows us to write an expression for the total elastic energy
associated with the chain of spheres as follows:

E ({θN,φN }) =
N∑

i=1

Eel (θi,φi) +
N∑

i=1

Ehw
i ({θi,φi}) . (4)

We emphasize that this approach [Fig. 1(b)] is an approxima-
tion for the more realistic uniformly thick chain [Fig. 1(c)].
We choose it for our model due to its simplicity and adequate
approximation of the chain excluded volume. However, it may
result in incorrect representation of chain excluded volume
near the chain termini. In particular, if we compare Fig. 1(c)
to Fig. 1(b), we note that the minimally possible end-to-end
distance of the chain is 0 in the former and w in the latter
representations, respectively.

The configurational partition function for the model DNA
chain consisting of N links is defined as

ZN =
∫ 1

−1
d cos θ1

∫ 2π

0
dφ1 · · ·

×
∫ 1

−1
d cos θN

∫ 2π

0
dφN exp [−βE ({θN,φN })] , (5)

where β = 1
kbT

. Substituting Ehw
i from Eq. (3) and opening

the sums yields

ZN =
∫ 1

−1
d cos θ1

∫ 2π

0
dφ1 exp

[−βEel (θ1,φ1)
]

×�hw
1 ({θ1,φ1}) · · ·

∫ 1

−1
d cos θN

∫ 2π

0
dφN

× exp[−βEel (θN,φN )]�hw
N ({θN,φN }) , (6)

where

�hw
i ({θi,φi})

=
{

0 joint i overlaps with one or more joints 0..(i − 1)
1 otherwise .

(7)

We term the model described by Eq. (4) the self-avoiding
wormlike chain model (SAWLC).

B. Generalizing the J factor for the SAWLC

The process of cyclization [1], defined as the joining of
one end of the molecule upon itself, can be quantified by the
equilibrium constant for the following process [1,13,21]:

M2N � MN + cMN, (8)

where MN, M2N , and cMN correspond to the monomeric,
dimeric (defined as the end-to-end joining of two separate
molecules), and cyclized polymer with N links, respectively.
This process can be equivalently expressed as two intermediate
processes:

MN + MN � M2N, (9a)

MN � cMN. (9b)

The Jacobson-Stockmayer factor (or J factor) is de-
fined as the equilibrium constant for the entire process (8)

[1,21]:

J ≡ [MN ] [cMN ]

[M2N ]
, (10)

and the equilibrium constants for the intermediate processes
are similarly defined as

KD ≡ [M2N ]

[MN ]2 , (11)

and

KC ≡ [cMN ]

[MN ]
, (12)

which implies that

J ≡ KC

KD

. (13)

Equation (13) is a useful expression for the J factor from an
experimental perspective, but less convenient for numerical
simulation.

In order to derive a more insightful expression for J , we
must first set a geometrical definition for bond formation
between the two termini in a chain of finite thickness. We
denote the locations of the bonding termini by r0 and rN , and
the directions of their bonds as t̂1 and t̂N (Fig. 1), regardless
of whether these termini are part of the same chain (i.e.,
cyclization) or different chains (i.e., dimerization). We define
the minimal possible separation between the two termini as
dmin. This leads to the following general bond formation
conditions for the SAWLC model (Fig. 2).

rN is confined to a volume δr around r0,

which is defined by a thin shell between dmin and dmin

+ ε and a solid angle δω′ around − t̂1. (14)

t̂N is collinear with t̂1 within the range δω. (15)

This definition is an extension of the corresponding bond-
formation condition defined by Flory [2] for the WLC. Note
that our definition reduces to the Flory criterion when we

FIG. 2. (Color online) Illustration of bond formation criteria. The
termini and their bond directions are denoted by r0,rN and t̂1,t̂N
respectively. The minimal possible separation between the termini is
denoted by dmin. The cross section of the volume δr in which rN must
reside is shown as a green (dark gray) wedge. The possible directions
for t̂N are shown as a blue (light gray) cone with its base at rN . The
rest of the chain is shown schematically with blue (light gray) arcs.
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set dmin = 0 and δω′ = 4π . The motivation for extending the
Flory condition arises from our imperfect understanding of
DNA bond formation. For example, if the transient bonds
formed in (9a) and (9b) are identical to the bonds that comprise
the bulk of the chain, then the correct representation of the
chain would have to be the one presented in Fig. 1(c) with
dmin = 0. If, however, the termini have a repulsive interaction
below some separation dmin, then dmin > 0, as shown for the
hard-wall interaction in Fig. 1(b).

Using our geometrical definition for bonding, we can now
consider the process in (9a). Before dissociation occurs, rN

is confined to a volume δr around r0. In that volume the
orientation of the bond direction t̂N is further restricted by
a solid angle of δω around t̂1. After the dissociation, it can
be anywhere in volume v, and its bond can assume any angle
within 4π . Denoting the symmetry number of a cyclic chain
species σa , we obtain the following change in configurational
entropy due to process (9a):

�S(a) = R ln

(
4πv/σa

δrδω

)
= R ln

(
V

NAσaδr δω
4π

)
, (16)

where we denote the change in entropy as �S(a), and the
volume per mole as V resulting in v = V

NA
as the volume

per one molecule, where NA is Avogadro’s number. If, for
simplicity, we assume that the species are present in standard
state concentration of one mole per unit volume (V = 1), we
obtain

�S(a) = R ln

(
1

NAσaδr δω
4π

)
. (17)

The standard molar Gibbs free-energy change for the dimer-
ization process (9a) can be written as

�G◦
(a) = �H ◦

(a) − RT ln

(
1

NAσaδr δω
4π

)
, (18)

where �H ◦
(a) is the dissociation heat of the dimer.

In the cyclization process (9b) an intramolecular bond is
formed which is equivalent to the one severed in the dimeriza-
tion (9a). We assume here that �H ◦

(b) = −�H ◦
(a) where �H ◦

(b)
is the dissociation heat of the ring. This assumption is valid
unless the overall length of the chain is so small as to induce
strain [2]. For the computation of the change in configurational
entropy due to process (9b), �S(b), we note that the termini of
chain MN must meet within the same ranges of δr and δω as
defined in Eqs. (14) and (15). This implies that the probability
for the termini to meet is given by∫

δr

∫
δω

C (r,ω) drdω, (19)

where C(r,ω) is the function expressing the distribution of the
end-to-end vector r ≡ rN − r0 within a solid angle ω around
t̂1 ( ω

2π
≡ t̂1 · t̂N ), per unit range in r (

∫
v

∫
4π

C(r,ω)drdω = 1).
Thus, the change in configurational entropy in process (9b) is

�S(b) = R ln

(∫
δr

∫
δω

C (r,ω) drdω
σa

σRN

)
, (20)

where σRN
is the symmetry number of a ring of N links. Hence

�G◦
(b) = �H ◦

(b) − RT ln

(∫
δr

∫
δω

C (r,ω) drdω
σa

σRN

)
.

(21)

Adding the Gibbs free energy change for processes (9a)
and (9b), we obtain the change in the Gibbs free energy for the
entire process (8):

�G = −T (�S(a) + �S(b))

= −RT ln

(∫
δr

∫
δω

C (r,ω) drdω

NAσRN
δr δω

4π

)
. (22)

This allows us to extract the J factor:

J = 4π
∫
δr

∫
δω

C (r,ω) drdω

NAσRN
δrδω

. (23)

Finally, when taking the infinitely thin or WLC limit for
long chains (L 	 b), we can assume that around r = 0,
C (r,ω) ≈ C(0)

4π
is approximately uniform and independent

of ω. Defining δr by dmin = 0 and δω′ = 4π , while taking
δr → 0, the expression above reduces to

J = 4π
∫
δr

∫
δω

C (r,ω) drdω

NAσRN
δrδω

≈ C (0) δrδω
NAσRN

δrδω
= C (0)

NAσRN

,

(24)

which is the original expression by Flory [2] for the WLC J
factor. Note that for the case of DNA cyclization σRN

= 1 [22].
We use the expression in Eq. (23) to compute the J factor by
numerical simulation.

III. NUMERICAL IMPLEMENTATION OF SAWLC

A. Numerical implementation overview

In order to evaluate the SAWLC looping probabilities,
we developed a Monte Carlo algorithm that is capable of
generating a large number of plausible self-avoiding DNA
chains. The Monte Carlo simulation was written in CUDA
C++, and was executed on two NVIDIA GeForce GTX
TITAN cards. The length of the generated chains ranged
from 50 to 5000 links. Each chain in our ensemble was
grown one link at a time by selecting the link’s orientation
according to the distribution described in Sec. III B, taking into
account disallowed directions due to the excluded volume of
previous links. In addition, each completed chain was assigned
a Rosenbluth weight as described in Sec. III C, resulting in a
faithful representation of the full configurational space. Typical
sizes of generated ensembles were Nc ≈ 1010 chains.

We computed the mean-square end-to-end distance 〈R2〉
and the polymer end-to-end separation power-law exponent ν

(
√

〈R2〉 ∝ Nν) in order to compare our simulation to previous
results [9,23]. For the computation of the J factor, we computed
the function C(r,ω) describing the distribution of the end-to-
end vector r with angle ω from t̂1 [see Eq. (23)]. The procedures
used in the computation of these expressions are detailed in
Sec. III C.
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In the following, we denote the number of links in the
simulated chain by N , the length of the links by l, the length
of the chain by L ≡ Nl, the diameter (or width) of the chain
by w, and the Kuhn length of the corresponding WLC as b,
where b is given by [12]

b

l
=

(
a − 1 + a coth a

a + 1 − a coth a

)
, (25)

and where a is the bending constant of the chain.

B. Sampling of chain angles

Our goal was to sample angles θi,φi that satisfy the
probability distribution,

P
θ,φ

i (cos θiε [−1,1] ; φiε[0,2π ))

∝ exp[−βEel (θi,φi)]�
hw
i ({θi,φi})

= exp [a (1 − cos θi)] �hw
i ({θi,φi}) . (26)

Note that we sampled cos θi and not θi according to this
distribution, since the quantity that is distributed uniformly
over the unit sphere is cos θi and not θi .

We chose to sample the ith link’s orientation angles
(cos θi,φi) using inversion sampling [24]. Here the inversion
sampling of a single random variable X from a probability
distribution function [PDF (X)] is carried out by, first, inte-
grating the PDF (X) over the entire range of X, resulting in a
cumulative distribution function [CDF (X)]. Then, a random
number y in the range (0,1) is generated from a continuous
uniform distribution. Finally, the desired variable value x is
extracted from the inverse function of the CDF (X) at y,
i.e., x = CDF−1 (y). In the case discussed here, the two-
dimensional variable space (cos θi,φi) can be mapped to a one-
dimensional space due to azimuthal symmetry considerations
in the elastic energy. We computed the CDF (X) numerically,
using the adaptive Gaussian integration method [25], and
subsequently inverted it.

In order to show how the mapping from the two-
dimensional variable space (cos θi,φi) to a one-dimensional
space is carried out, we first consider the case of the chain
without the excluded volume constraint. Namely, we compute
the inverse of the following function:

I (cos θi) =
∫ cos θi

−1 d cos θ
∫ 2π

0 dφ e−a(1−cos θ)∫ 1
−1 d cos θ

∫ 2π

0 dφ e−a(1−cos θ)
, (27)

which allows us to extract cos θi , provided that some random
number y corresponding to I (cos θi) is generated in the range
(0,1). Finally, we generate φi from a uniform distribution over
the entire range φiε[0,2π ) to complete the two-angle set.

If we reintroduce the hard-wall potential, the above integral
now changes to

I (cos θi) =
∫ cos θi

−1 d cos θ
∫

allowed φ for θ
dφ e−a(1−cos θ)∫ 1

−1 d cos θ
∫

allowed φ for θ
dφ e−a(1−cos θ)

. (28)

The integral over φ is no longer over the entire [0,2π ) range,
as some directions in space cannot be assumed by the new link
due to the excluded volume constraint. Thus, for each possible
θ angle of the new link, there is a different range of φ values

 forbidden
directions

for

FIG. 3. (Color online) Forbidden directions for t̂i . Purple (light
gray) sphere is the excluded volume around ri−1 [the endpoint of the
(i − 1)th link]. The red (dark gray) sphere is a potentially colliding
object. If t̂i assumes any direction inside the black (dark gray) cone
this would result in a collision of the hard-wall sphere at ri with the
red sphere.

that are allowed. The situation is illustrated in Fig. 3. The red
sphere is an object in close proximity to the endpoint of the
(i − 1)th link. The black cone maps the directions forbidden
for t̂i , as that would cause an overlap between the ith link and
the red sphere. These directions must be excluded from the
integration in (28). As a result, we may proceed similarly to
the nonconstrained case, except that in this case the angle φi

is no longer sampled from the full [0,2π ) range, but from a
smaller range of possible values.

In order to compute the integral in (28) and to generate
φi , we first compute the set of values that are allowed for
φi for each value of θi . Since there can be more than one
colliding object, the set of allowed values for φi need not be one
continuous range. Rather, these values can be organized into
m � 1 consecutive ranges [ra

i,0,r
b
i,0],...,[ra

i,m−1,r
b
i,m−1], such

that

φtot
i =

m−1∑
j=0

(
rb
i,j − ra

i,j

)
� 2π. (29)

Thus, for each θi the φi angle can be sampled from a
stepwise uniform distribution:

P
φ

i (θi, φiε(0,2π )) =
∑m−1

j=0 �
(
φi − ra

i,j

)
�

(
rb
i,j − φi

)
φtot

i

. (30)

1. Mapping disallowed directions for the i th link

After generating i − 1 links of the chain, the endpoint is
located at ri−1 and the link direction is t̂i−1. We now have
to map all the directions that t̂i cannot assume (as shown in
Fig. 3). In the following discussion we focus on one of the
chain joints in the vicinity of ri−1 which limits the range of
t̂i . We denote the location of this potentially colliding joint as
rp and the vector from the endpoint ri−1 to the center of the
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potentially colliding sphere as r:

r = rp − ri−1. (31)

We denote by γ the angle between the direction of the last link
t̂i−1 and r:

cos γ = r
|r| · t̂i−1. (32)

We note that the forbidden directions for t̂i form a cone around
r (Fig. 3). We denote half of the opening angle of the cone
by α which can then be calculated from simple geometrical
considerations as

cos α = |r|2 − w2 + l2

2 |r| l . (33)

A certain (θi,φi) direction is disallowed for t̂i if the vector
ri = ri−1 + lt̂i is at a distance |r − ri |2 � w2 from rp. We
proceed to work in the local coordinates of the (i − 1)th link,
assuming for now that r is in the XZ plane in these coordinates:

r = |r| (sin γ,0, cos γ ) , (34)

ri = lt̂i = l(sin θi cos φi, sin θi sin φi, cos θi). (35)

Disallowed values of (θi,φi) satisfy the following
inequality:

|r − ri |2 = (|r| sin γ − l sin θi cos φi)
2+ (|r| cos γ − l cos θi)

2

+ l2 sin2 θi sin2 φi � w2. (36)

We can thus map the disallowed range for t̂i in two steps. We
first determine the range of cos θi for which a collision can
occur at all. Then, for each θi in this range we determine the
range of φi for which a collision does occur.

2. The θi range for which a collision occurs

The critical values cos θ± for which |r − ri |2 = w2 can be
derived from Eq. (36) as follows:

cos θ± = cos (γ ∓ α) = cos γ cos α ± sin γ sin α. (37)

Caution is needed when interpreting the results in (37).
It is true that choosing cos θi ∈ [cos θ−, cos θ+] will result in
collision for some values of φi (Fig. 4). However, this does
not take into account additional θi ranges for which there is
a collision for all values of φi . Such a situation is shown in
Fig. 4(b): For cos θi ∈ [cos θ−, cos θ+] obviously a collision
occurs for some values of φi , but for cos θi ∈ [cos θ+,1] a
collision occurs for all values of φi .

If the colliding object is located at cos γ > cos α or at
cos γ < − cos α there is a range of θi values for which a
collision occurs for all values of φi . To summarize,

(i) There are disallowed φi angles for cos θi ∈
[cos θ−, cos θ+].

(ii) If cos γ > cos α, for cos θi ∈ [cos θ+,1] there is always
a collision.

(iii) If cos γ < − cos α, for cos θi ∈ [−1, cos θ−] there is
always a collision.

(b)(a)

FIG. 4. (Color online) θi ranges mapping. θi ranges that do not
cause a collision for all values of φi are marked in green (dark gray).
θi ranges that cause a collision for some values of φi are marked in
yellow (light gray). θi ranges that cause a collision for all values of
φi are marked in red (medium gray). (a) If θi ∈ [θ+,θ−], a collision
occurs for some values of φi . (b) If θi ∈ [0,θ+], a collision occurs for
all values of φi .

3. The φi range in which a collision occurs, for specific θi

We begin with Eq. (36) and find the critical value of φi (φic)
for a specific value of θi :

cos φic (θi) = cos α − cos γ cos θi

sin γ sin θi

. (38)

A full collision (no possible values for φic) occurs when

cos α − cos γ cos θi

sin γ sin θi

< −1. (39)

No collision occurs when

cos α − cos γ cos θi

sin γ sin θi

> 1. (40)

The disallowed angles for a specific θi are

−φic (θi) � φdisallowed (θi) � φic (θi) . (41)

We can now generalize to the case when r is not in the XZ
plane. If r = |r| (sin γ cos β, sin γ sin β, cos γ ) then

β − φic (θi) � φdisallowed (θi) � β + φic (θi) . (42)

C. Faithful ensemble sampling

For the simulation of the WLC model we used impor-
tance sampling (IS; see Appendix A 1). For the simulation
of the SAWLC model (and the thick freely jointed self-
avoiding chain) we used weighted-biased sampling (WBS; see
Appendix A 2) [26], which is based on a method developed by
Rosenbluth and Rosenbluth [27]. A variation of this method
was recently used to sample dsDNA configurational space [12]
for much longer chains than the ones used in this work to
examine the cyclization process.

The partition function for an ensemble of Nc sampled chains
of N links in WBS is given by

ZN =
Nc∑
j=1

W ({θN,φN }j ), (43)
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where W
({θN,φN }j

)
is the Rosenbluth factor of the j th chain

in the ensemble:

W ({θN,φN })

=
N∏

i=1

∫ 1

−1
d cos θi

∫ 2π

0
dφi exp[−βEel(θi,φi)]�

hw
i ({θi,φi})

=
N∏

i=1

∫
non−colliding directions

dθidφi exp[−βEel(θi,φi)],

(44)

with �hw
i defined in Eq. (7).

The average value 〈f 〉 of a physical property is calculated
as

〈f 〉 =
∑Nc

j=1 f ({θN,φN }j )W ({θN,φN }j )∑Nc

j=1 W ({θN,φN }j )
. (45)

This allows the computation of 〈R2〉. The power-law exponent
ν was extracted from the computed 〈R2〉 (see Appendix B 1).

To approximate C(r,ω), the configurational space for r =
(r,ω′) and ω is partitioned into bins, with bin volume dr × dω.
In each bin we compute the probability of the end-to-end vector
r and relative bond orientation to be contained in the bin:

Pbin(r,ω′,ω)

= lim
Nc→∞

∑Nc

j=1 fbin(r,ω,{θN,φN }j )W ({θN,φN }j )∑Nc

j=1 W ({θN,φN }j )
, (46)

where

fbin (r,ω, {θN,φN })

=
⎧⎨⎩1 rN and t̂N relative to t̂1 are contained

in the bin defined by r,ω and dr,dω

0 otherwise
. (47)

C(r,ω) is then computed by

C(r,ω) = Pbin(r,ω′,ω)

dr × dω
. (48)

IV. RESULTS

A. DNA end-to-end distance analysis and
comparison to RG results

In order to verify that our algorithm generates a faithful
swollen chain ensemble, we simulated chains of up to 5000
links and compared our simulation results to previously
published renormalization group (RG) calculations [9] and
Monte Carlo results [12]. We simulated chains with the
touching-beads model [l = w; see Fig. 1(b)] and dsDNA-like
parameters of b ≈ 106 nm and w ≈ 4.6 nm.

In Fig. 5 we plot the RG predictions and our simulation
results for the polymer end-to-end separation power-law
exponent ν as a function of the normalized chain length L

b
.

We display three cases: a “thick” polymer with dsDNA-like
parameters w

b
≈ 4.6

106 � 1 (SAWLC), a zero-thickness dsDNA
(WLC), and a fully flexible “thick” polymer with w

b
= 1

(self-avoiding freely jointed chain, SAFJC). The simulation
shows that the SAWLC (dashed green curve and green squares)

10
−2

10
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10
2

10
4

10
60.4

0.5

0.6

0.7

0.8

0.9

1

L

b

ν

SAFJC (RG)
SAWLC dsDNA (RG)
WLC (theory)
SAFJC (sim.)
SAWLC dsDNA (sim.)
WLC (sim.)

FIG. 5. (Color online) Comparison of the simulation results to
the RG calculations and WLC theory. Power-law exponent ν of the
end-to-end distance

√
〈R2〉 is plotted as a function of chain length

L/b. We compare three cases (top to bottom): a freely jointed “thick”
polymer (SAFJC) with w

b
= 1 and l = w (solid blue line, RG; blue

triangles, simulation), a “thick” polymer (SAWLC) with dsDNA-like
parameters w

b
= 4.6

106 � 1 and l = w (dashed green line, RG; green
squares, simulation), and a zero-thickness dsDNA (WLC) with l

b
=

4.6
106 (dotted red line, WLC; red diamonds, simulation). The excluded
volume parameter in the RG calculations was rescaled to match the
excluded volume in the simulations with uRG = 1.5u following Tree
et al. [12].

maintains a WLC-like behavior (dotted red curve and red
diamonds) for lengths that are up to several times larger
than the persistence length lP ≡ b

2 . At L
b

≈ 30 the curve
and simulation begin to bend up and approach the SAFJC
prediction until convergence of the SAWLC and the SAFJC is
predicted to occur by RG at L

b
≈ 104. It is important to note that

while our simulation does not capture the exact convergence to
the predicted SAWLC behavior due to chain-length limitations
of our algorithm, the trends are precisely tracked over the
range of the RG predictions. Moreover, the length at which the
divergence away from the WLC behavior occurs (the length
where the dashed green and dotted red lines separate) is highly
dependent on the width parameter (w

b
). This result is consistent

with experimental observations [10] and simulation [12].
For the case of the SAFJC (w

b
= 1), our simulation produces

a decaying power law that converges to the Flory prediction
of

√
〈R2〉 ∝ N−0.5876 for long chain lengths. Note that our

simulation for the semiflexible chain deviates from the RG
predictions only for very short chains (N < 5). However,
for the fully flexible chain our simulation converges on the
RG predictions for values N > 20. These deviations are a
natural consequence of the discrete simulation process, as
our simulation employs finite size links while the RG and
WLC predictions are for continuous chain models, which
correspond to the case l → 0 and N → ∞. The larger short-
scale deviation from the RG predictions generated by our
simulation for the SAFJC (deviation of the blue triangles
from the solid blue line for L

b
< 102) can be explained by

short-range excluded volume interactions, which are properly
simulated by our algorithm and are for the most part neglected
in the RG model [9].
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FIG. 6. (Color online) The J-factor power law. (a) Comparison of J-factor power-law exponents χ for the WLC ( w

b
= 0) (red diamonds),

SAWLCs with w

b
= 0.046 (green squares) and w

b
= 0.2 (magenta circles), and the SAFJC ( w

b
= 1) (blue triangles), using dmin = w and ε

w
= 4.

The blue (bottom) and red (top) dashed lines correspond to the SAFJC and WLC power laws of −1.92 and −1.5, respectively. (b)–(d) Effect of
ε on the J-factor power-law exponent. (b) J-factor power-law exponent for the SAFJC with various ε

w
. (c) J-factor power-law exponent for the

SAWLC with ω

b
= 4.6

106 and with various ε

w
. (d) J-factor power-law exponent for the WLC ( w

b
= 0) with b = 106 nm and with various ε

wdsDNA
,

where wdsDNA is taken to be equal to that of dsDNA.

B. The SAWLC J factor in the entropic regime

We next proceeded to model the looping or cyclization
J factor as defined in Eq. (23). We first examined the
entropic regime, namely L

b
	 1. For the sake of simplicity,

for this regime we set dmin = w and δω′ = δω = 4π in (14)
and (15). In Fig. 6 we plot the J-factor power-law exponent
χ as a function of the normalized chain length L

b
. Previous

theoretical studies have shown that in the entropic regime,
the J-factor scales like J ∝ Nχ = N− 3

2 for the WLC model
and J ∝ N−(3ν+γ−1) = N−1.9196 for a flexible swollen chain
(see Appendix B 2), where ν is the end-to-end power-law
exponent and γ is the “universal” exponent [8]. In Fig. 6(a), we
plot the J-factor power-law exponents for the WLC (w

b
= 0,

red diamonds), SAWLCs with w
b

= 4.6
106 (green squares) and

w
b

= 0.2 (magenta circles), and the SAFJC (w
b

= 1, blue
triangles). The panel shows that the behavior of the power-law
exponent dramatically changes as the value of w

b
increases

from zero for the ideal WLC behavior to one for the fully
swollen chain. Both the semiflexible WLC and the fully
flexible SAWLC J factors converge on their respective theoret-
ical predictions. Moreover, our calculations indicate that the
SAWLC J factor converges to the asymptotic value of −1.92
in a manner which is highly dependent on the thickness of the
respective chains.

To gain a better insight into the power-law behavior of the
J factor, we plot in Figs. 6(b)–6(d) the J-factor power-law ex-
ponents for the SAFJC, the SAWLC with dsDNA aspect ratio
w
b

= 4.6
106 , and the WLC, for various values of ε

w
, corresponding

to the size of the sphere where bond formation between the two
chain termini occurs [see Eq. (14)] divided by the chain diam-
eter. We notice that in all three figures the power-law behavior
in the far entropic regime converges to the scaling theory’s
predicted limit. Instead, the effects of ε

w
seem to be localized

to the shorter range elastic regime and the intermediate (elastic-
entropic) transition region. However, the effects of varying ε

w

on the J-factor power-law exponent for the SAFJC are striking
as compared with the other cases. Here [Fig. 6(b)] we observe
a sharp dependence in the elastic regime. Moreover, the value
of L

b
at which the transition to the entropic regime and the

convergence to the scaling-theory power-law exponent occur,
is a strong function of ε

w
. Consequently, we conclude that this

parameter plays an important role in the physical properties of
polymers the closer the value of w

b is to one.

C. The SAWLC J factor in the elastic regime

In order to complete our description of the effects of the
excluded volume on the J factor, we generated ensembles of
short chains up to L

b
≈ 3. It was previously predicted [8]
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FIG. 7. (Color online) WLC and SAWLC (dmin = 0) comparison
in the elastic regime. The insets show a cross section of the data in
the xz plane. r0 is in the origin and t̂1 = ẑ. (a) log10(CWLC(r)/NA) in
the xz plane for WLC with L = 162 bp. (b) log10(CSAWLC−0(r)/NA)
in the xz plane for SAWLC with L = 162 bp, w

b
= 4.6

106 and dmin = 0.
(c) log10( CWLC(r)

CSAWLC−0(r) ). (d) A blowup of the rectangular section marked
in (c). Note, shorter chains were also examined, however, the
accumulated statistical data around the origin in those chains was
insufficient, and precluded a comprehensive analysis. Qualitatively,
however, the shorter chains exhibited the same behavior as shown
below in the data ranges that contained significant statistical data.

that for short chains the excluded volume effect should be
negligible, as the elastic energy is expected to be the dominant
contribution to the probability of looping. Figure 7 shows
cross sections of C (r) ≡ ∫

C (r,ω) dω in the xz plane for
both the WLC and the SAWLC with L

b
≈ 55.2nm

106nm ≈ 0.52 and
dmin = 0 and δω′ = δω = 4π in the SAWLC case, with r0

at the origin and t̂1 = ẑ. Figures 7(a) and 7(b) show that the
spatial distributions for the end-to-end separations are highly
anisotropic functions in the z direction for both the SAWLC
and the WLC. This implies that the probability of looping itself
must be highly anisotropic. In addition, both distributions look
similar, where the only significant deviation observed for the
self-avoiding from the non-self-avoiding distribution emerges
from the space occupied by the chain around the origin [white
circle in Fig. 7(b)]. In order to quantify this observation, we
divided the two distributions, as shown in Fig. 7(c). It is evident
from this panel that while both the self-avoiding and non-
self-avoiding C (r) functions are similar, they differ around
the origin in the positive z direction, where the SAWLC has
reduced probability [Fig. 7(d)]. This is expected, since r1 = lẑ,
rendering the volume around the origin inaccessible for rN .

We next examined the case in which dmin �= 0 (and δω′ =
δω = 4π ), implying that looping is now defined for some finite
volume around the origin for the WLC. In the SAWLC model,
this condition translates to a larger volume around the origin for
which the distribution vanishes [see Fig. 8(a)]. However, the
actual deviation from the non-self-avoiding WLC distribution
function is for the most part negligible, as can be seen from

FIG. 8. (Color online) WLC and SAWLC (dmin = w) compari-
son in the elastic regime. The insets show a cross section of the data in
the xz plane. r0 is at the origin and t̂1 = ẑ. (a) log10(CSAWLC−w(r)/NA)
in the xz plane for SAWLC with L = 162 bp, w

b
= 4.6

106 , and dmin = w.
(b) log10( CWLC(r)

CSAWLC−w(r) ).

Fig. 8(b), and is similar in its scope to the minimal effect
described for dmin = 0 above. Consequently, any deviation of
the SAWLC J factor from the WLC prediction in the elastic
regime is not due to some global modification of the underlying
distribution, but rather arises from a local redefinition of δr
in Eq. (23), which is imperative due to the presence of the
excluded volume around the origin.

Computation of CSAWLC(r) is extremely time-consuming
for chain lengths shorter than ≈160 bp. We therefore utilized
the apparent identity of CSAWLC(r) and CWLC(r) far enough
away from the origin to approximate CSAWLC(r) for shorter
chain lengths. We modeled the effect of the excluded volume
on the SAWLC J factor by computing CWLC (r) and excluded
volumes inaccessible to the SAWLC due to both w > 0 and
dmin > 0 in the integration in Eq. (23). The removed volumes
were approximated by a cylinder with diameter 2w oriented
along ẑ with the center of the lower base at the origin, and
a sphere with radius dmin centered at the origin. Figure 9(a)
shows a schematic for the volume inaccessible to the SAWLC
superimposed on CWLC(r).

Using this approximation for CSAWLC(r), we were able to
study the SAWLC J factor for short chain lengths. In Fig. 9(b),
we study the case in which looping is defined for some constant
bond-center to bond-center separation (dmin + ε = 4.6 nm) for
varying values of shell thickness ε. The figure shows that at
some shell thickness values (dotted blue line), the SAWLC
J factor is larger by about half an order of magnitude as
compared to the WLC J factor (solid aqua line) for loop lengths
L ∼ 100 bp. In Fig. 9(c), we compare the J factor for several
SAWLCs to their WLC counterparts, keeping ε constant. The
figure shows that as the looping criterion for bond-center to
bond-center separation (dmin + ε) increases, the deviation from
the WLC J-factor prediction increases as well (compare red
and red-dashed to blue and blue-dashed lines). This result
indicates that the deviation of the SAWLC J factor from the
WLC J factor can be made to approach an order of magnitude
or more if the bond-center to bond-center looping criterion is
increased sufficiently.

V. DISCUSSION

We carried out a simulation study of the looping or cycliza-
tion J factor for a self-avoiding wormlike chain (SAWLC)
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FIG. 9. (Color online) Effect of dmin on the J factor in the elastic regime. (a) The volume enclosed in the light-green outline is inaccessible
to a SAWLC chain. (b) J factor for the WLC and SAWLC, varying dmin, constant dmin + ε = 4.6 nm. Recent experimental data [7] are shown
with black squares. (c) J factor for the WLC and SAWLC, varying dmin, constant ε = 1 nm. Recent experimental data [7] are shown with
black squares. Note the particular choice of dmin + ε is based on accepted physical values for the effective chain thickness in standard saline
conditions. Even though the effects are slightly different in both cases, the magnitude of the effects is less than half an order of magnitude for
these values.

model, taking excluded volume effects into consideration
for the first time. The distribution of DNA configurations
generated by our numerical algorithm was carefully tested
by comparing to scaling theory [8] and renormalization
group [9] results for the entropic regime, and indeed faithfully
represented the swollen chain partition function. In particular,
our algorithm was able to extract the universal exponent
γ [8], and to reproduce the predicted N−1.92 [8,19] J-factor
power law for the entropic regime (i.e., where L 	 lp).
This stronger power-law drop-off is a direct consequence of
the self-avoiding assumption, under which the end-to-end
separation grows like ≈N0.5876 as compared with the ideal
chain scaling of ≈N0.5. We further showed that the rate of
convergence of the SAWLC J-factor power-law exponent to
the asymptotic value of −1.92 is highly dependent on the
semiflexible chain aspect ratio. This result implies that a highly
precise experimental determination of the dsDNA aspect ratio
can be made by simply measuring this power-law exponent
for various looping lengths. Our model and its numerical
implementation thus enabled the study of the swollen-chain
J factor in the elastic regime, where swollen-chain analysis to
our knowledge has not been carried out previously.

While the statistics in the elastic regime are dominated
by elastic energy considerations, our results indicate that
the SAWLC model generates a small but detectible effect
on the propensity of the chain to loop. Our computations
show that in this regime, the angle-independent probability

density function of the end-to-end vector C (r) is almost
identical for the WLC and SAWLC at points which are
accessible to both types of chains. However, there is a range
of end-to-end vector r which is inaccessible to the SAWLC
[Fig. 9(a)]. The excluded volume of the SAWLC model leads
to a redistribution of CSAWLC(r), as shown in Fig. 9, with
the combined weight of the CWLC(r) within the excluded
volume being shifted outside of the SAWLC excluded volume.
This could result in an increase in

∫
δr accessible CSAWLC(r)dr.

Comparison of our numerical calculations of C(r) for both
models (Fig. 9) shows that this redistribution of weight is
roughly uniform over the entire range of r. This uniformity is
not surprising, since we could have generated the ensemble of
short chains using importance sampling (IS; see Appendix A 1)
and then discarded all self-crossing chains, thereby increasing
the weight of all allowed chains uniformly. Moreover, if we
assume that

∫
δr inaccessible CWLC(r)dr is redistributed uniformly

over the r range, we obtain a relative increase in the J
factor on the order of �J/J ≈ 10−5. This is clearly not the
main increase in the SAWLC J factor observed in Fig. 9(b).
Instead, the increase that we observe is likely due to the
anisotropic nature of C(r). Namely, the excluded volume
for the SAWLC model overlaps the region for which the
probability density CWLC(r) is particularly low [the region
enclosed in the light-green outline in Fig. 9(a), in the positive
ẑ direction]. Thus CWLC(r) averaged over the part of δr
accessible to the SAWLC model increases, which in turn leads
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to an increase in the J factor [see Eq. (23)]. Interestingly,
the particular choice of the boundary conditions for looping
(e.g., minimal bond-to-bond separation) determines the extent
of the increase. Consequently, the semiflexible chain SAWLC
J factor generates the following picture as compared with the
WLC J factor: In the elastic regime, there is a slightly increased
probability for looping, while in the entropic regime this trend
switches and the SAWLC J factor falls off with a power law
greater than the −1.5 value predicted for the WLC.

Previous analyses have shown that the value of the J factor
at the elastic regime can be made very sensitive to boundary
conditions and local deformations on the DNA [7,16,17]. Our
result adds another possible contribution that, together with
the previous explanations, could generate a cumulative effect
that might explain the seemingly anomalous bendability effect
observed in cyclization experiments [4,6,7].

Using this insight, what are the experimental implications
for looping or cyclization experiments? First, experiments that
aim to test looping in the elastic regime will be strongly
dependent on boundary conditions. This implies that any
observed deviation from a consensus model should first be
considered in the context of better models that simulate
the effects of the particular boundary conditions. Second,
cyclization experiments that are carried out at larger polymer
lengths should be considered as the effects of the boundary
conditions become negligible for longer polymer contour
lengths. In this regime, cyclization measurements can yield
accurate estimates for the persistence length of the polymer and
effective width or thickness based on measuring the looping
probability and comparing to the theoretical predictions shown
in Fig. 6. Finally, our model represents a realistic depiction of
DNA molecules at length scales that are relevant to biological
regulation. We believe that it can form the basis for a more
elaborate model that incorporates protein-DNA interactions.
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APPENDIX A: FAITHFUL SAMPLING

1. Importance sampling

For the simple (non-self-avoiding) 3D freely jointed chain
(FJC) model [28], faithful ensembles of polymer chains can be

generated computationally by random step-by-step sampling
of the angles of each successive link. In this method, a
complete N -mer chain is constructed in sequence, where the
ith step samples the θi,φi angles to construct an i-mer chain.
After sampling a sufficient number of chains, the partition
function can be evaluated from the Nc sampled chains as
follows:

ZN =
Nc∑
j=1

e−βEj = Nc, (A1)

where Ej = 0 in the FJC case. Any physical property 〈f 〉 can
be likewise computed:

〈f 〉 =
∑Nc

j=1 f ({θN,φN }j )e−βEj∑Nc

j=1 e−βEj

=
∑Nc

j=1 f ({θN,φN }j )

Nc

.

(A2)

When trying to collect an ensemble of plausible polymer
configurations for the WLC model, the simple sampling
algorithm described above is insufficient. Unlike the FJC
model, in the WLC model link orientations depend strongly
on the elastic energy of bending [see Eq. (2)]. Namely,
sharp bends are highly improbable as compared to small
perturbations away from the nonbending minima. As a result,
a uniform sampling procedure of the relative link orientations
will yield a disproportionate number of improbable chains
that are characterized by very large bending energies, which
will increase by orders of magnitude the computation time
necessary to obtain a statistically significant and representative
ensemble.

In order to alleviate this problem, and generate a faithful
sampling algorithm for the WLC model (i.e., Ehw = 0),
we employ a sampling method termed importance sampling
(IS) [29]. In IS we assign the following Boltzmann weight to
the ith link:

exp[−βEel(θi,φi)]. (A3)

We then sample the chain links according to the following
probability distribution:

pel(θi,φi) = exp[−βEel(θi,φi)]∫ 1
−1 d cos θi

∫ 2π

0 dφi exp[−βEel(θi,φi)]
.

(A4)

As a result, the orientation angles that are more likely to occur
due to low bending energies will be chosen more frequently,
thus reflecting faithfully the underlying distribution. Further-
more, since each sampled link appears in a chain of N sampled
links, the cumulative probability to obtain each chain is a
product of the individual link probabilities sampled at every
stage of the chain construction, as follows:

P el
tot({θN,φN }) ≡

N∏
i=2

pel(θi,φi) =
N∏

i=2

exp[−βEel(θi,φi)]∫ 1
−1 d cos θi

∫ 2π

0 dφi exp[−βEel(θi,φi)]

= exp
[−β

∑N
i=2 Eel(θi,φi)

]∫ 1
−1 d cos θ1

∫ 2π

0 dφ1 · · · ∫ 1
−1 d cos θN

∫ 2π

0 dφN exp
[−∑

iβEel(θi,φi)
] = exp[−βEchain]∫

allconfigurations exp[−βEchain]
. (A5)

052602-11



YAROSLAV POLLAK, SARAH GOLDBERG, AND ROEE AMIT PHYSICAL REVIEW E 90, 052602 (2014)

Thus, this method generates complete WLC chains according to their statistical probabilities in the ensemble.
According to statistics theory [30], if X : � → R is a random variable in some probability space (�,F ,P ) and one wishes

to estimate the expected value of X under P , provided that one has random samples x1, . . . , xn generated according to P , then
an empirical estimate of E[X; P ] is

Ên[X; P ] = 1

n

n∑
i=1

xi. (A6)

This simplifies the computation of any physical observable 〈f 〉 for the IS to

〈f 〉 = 1

Nc

Nc∑
j=1

f ({θN,φN }j ). (A7)

2. Weighted-biased sampling

The IS method can be used to generate chains for the SAWLC model by following (A4) and then discarding chains with
overlapping links. However, this method is extremely inefficient and leads to extreme sampling attrition [31].

Naively one could replace Eq. (A4) with

pi({θi,φi}) = exp[−βEel(θi,φi)]�hw
i ({θi,φi})∫ 1

−1 d cos θi

∫ 2π

0 dφi exp[−βEel(θi,φi)]�hw
i ({θi,φi})

, (A8)

where �hw
i ({θi,φi}) was defined previously in Eq. (7), and follow the same (IS) procedure. However, since the hard-wall potential

eliminates a certain percentage of the possible configurations, a misrepresentation of the sampled chains in the ensemble results,
as discussed in [27]. Therefore, in order to produce a faithful representation of the partition function, each generated chain has
to be assigned with a weight for the excluded volume case.

In order to gain insight into the calculation of these weights and their necessity, we consider the general case of self-avoiding
chains. We denote the probability of a chain j with N links to appear in a statistical ensemble as P S

j :

P S
j = e−βEj

ZS
N

, (A9)

where ZS
N is the partition function of the statistical ensemble. We denote the probability of a chain j with N links to be generated

with IS as P IS
j . Due to the way the chain links are sampled,

P IS
j =

N∏
i=2

pi({θi,φi}j ) =
N∏

i=2

(
exp[−βEel(θi,φi)]�hw

i ({θi,φi}j )∫ 1
−1 d cos θi

∫ 2π

0 dφi exp[−βEel(θi,φi)]�hw
i ({θi,φi}j )

)

= e−βEj∏N
i=2

( ∫ 1
−1 d cos θi

∫ 2π

0 dφi exp[−βEel(θi,φi)]�hw
i ({θi,φi}j )

) . (A10)

While the numerators in (A10) and (A9) agree, the denominators differ. Furthermore, the denominator in (A10) is different
for each chain configuration, unlike the denominator in (A9). Thus, to remove the bias for chain j , it is sufficient to take the
denominator of (A10) as the counterweight W ({θN,φN }):

W ({θN,φN }) =
N∏

i=2

∫ 1

−1
d cos θi

∫ 2π

0
dφi exp[−βEel(θi,φi)]�

hw
i ({θi,φi}), (A11)

which allows one to define the link-by-link counter-weight as

ωi({θi,φi}) =
∫ 1

−1
d cos θi

∫ 2π

0
dφi exp[−βEel(θi,φi)]�

hw
i ({θi,φi}) =

∫
non−colliding directions

dθidφi exp[−βEel(θi,φi)], (A12)

and the Rosenbluth factor as

W ({θN,φN }) =
N∏

i=1

ωi ({θi,φi}) . (A13)

The partition function takes on the following form in the
WBS case:

ZN =
Nc∑
j=1

W ({θN,φN }j ), (A14)
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and the average value 〈f 〉 of a physical property is calculated
as

〈f 〉 =
∑Nc

j=1 f ({θN,φN }j )W ({θN,φN }j )∑Nc

j=1 W ({θN,φN }j )
. (A15)

APPENDIX B: ADDITIONAL COMPUTATIONS

1. Computation of power-law exponents

To compute the power-law exponents ν of
√

〈R2〉 and χ of
the J factor in Secs. IV A and IV B, respectively, we started off
by taking a logarithm of both the data and L/b. The power-law
exponent could then theoretically be read from the slope of the
logarithm of the data as a function of log (L/b). The data,
however, are very sensitive to noise in the sampled data. Thus,
we employed a smoothing algorithm to deduce the slope of
the data at each point: We used a sliding window along the
values of L/b. The range of the plot covered by the sliding
window was fitted to a linear function, and the slope of the
linear function was taken as the slope of the plot at the center
of the sliding window. The size of the sliding window was
increased as L/b increased in order to account for increased
noise at greater values of L/b.

2. A scaling theory derivation for the asymptotic power
law for looping in the swollen coil regime

The WLC model predicts that the J factor will scale like
N− 3

2 in the entropic regime, when the length of the polymer
is much longer than the persistence length (N 	 lp) [28].
Likewise, the swollen chain also exhibits some power-law
dependency in the entropic regime. The asymptotic behavior
of the SAWLC model in the entropic regime can be inferred
from the existing theory for a freely jointed chain on a 3D
lattice. In the following derivation we rely on the arguments
given in [8,32]. We first assume that in the entropic regime,
the probability of looping scales as

ploop (N ) ∝ N−α. (B1)

Since the probability for looping is defined as a ratio of the
number of looped polymer configurations to the total number

of polymer configurations, we begin with the asymptotic
expression for the total number of available configurations
for a self-avoiding chain of N links [33]:

Z = z̃NNγ−1, (B2)

where z̃ is a number corresponding to the effective lattice
space that the chain is defined on (i.e., z̃ = 6 for an ideal chain
defined on a cubic lattice). Next, the mean square end-to-end
distance for a swollen chain follows a scaling law, originally
derived by Flory [2]:

Rf ∝ Nν. (B3)

Combining these two results, it is possible to derive an
expression for the total number of looped states for a self-
avoiding random-walk chain. This result is derived for a grid
with pixels of size a, such that a loop is formed when the
two ends are separated by a distance a. Thus, on a grid, a
self-avoiding random-walk chain will form a closed polygon
of N + 1 edges, which implies [8]

Zloop ∝ z̃N

(
a

Rf

)3

, (B4)

with a normalizing term which takes into account that the loop
can be closed anywhere within a sphere of radius which is
roughly equal to the Flory radius. Given this expression, we
can now write the expression for the probability for looping in
the asymptotic regime [8]:

ploop (N ) ≡ 1

a3

Zloop

Z
∝ 1

R3
f Nγ−1

∝ N−(3ν+γ−1), (B5)

which is the desired power law. Finally, using the RG derived
values for ν = 0.5876 and γ = 1.1568 � 7/6, [23,34,35] we
obtain

χ = 3ν + γ − 1 = 1.9196 . (B6)

The universal nature of exponent γ implies that the J-factor
power law for semiflexible swollen chains (w

b
< 1) can be

predicted simply from the end-to-end exponent ν.
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